

Analyzing Computer System Performance with Perl::PDQ

Neil J. Gunther

123

AnalyzingAnalyzingAnalyzingAnalyzingAnalyzing
CCCCComputomputomputomputomputer Ser Ser Ser Ser Syyyyystststststememememem
PPPPPerererererfffffororororormancmancmancmancmanceeeee
with Pwith Pwith Pwith Pwith Perererererl::PDQl::PDQl::PDQl::PDQl::PDQ
With 176 Figures and 59 Tables

Library of Congress Control Number: 2004113307

ACM Computing Classification (1998): C.0, C.2.4, C.4, D.2.5, D.2.8, D.4.8, K.6.2

ISBN 3-540-20865-8 Springer Berlin Heidelberg New York

Neil J. Gunther
Performance Dynamics Company
4061 East Castro Valley Blvd.
Suite 110, Castro Valley
California 94552
USA
http://www.perfdynamics.com/

This work is subject to copyright. All rights are reserved, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilm or in any other way, and storage in
data banks. Duplication of this publication or parts thereof is permitted only under the
provisions of the German Copyright Law of September 9, 1965, in its current version, and
permission for use must always be obtained from Springer. Violations are liable for
prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

The use of general descriptive names, registered names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.

Cover design: KünkelLopka, Heidelberg
Production: LE-TeX Jelonek, Schmidt & Vöckler GbR, Leipzig
Typesetting: By the author
Printed on acid-free paper 45/3142/YL - 5 4 3 2 1 0

Common sense is the p i t f a
l

l

of performance analysis

Preface

Motivation

This book arose out of an attempt to meet two key objectives. The first was
to communicate the theory and practice of performance analysis to those who
need it most, viz. IT professionals, system administrators, software developers,
and performance test engineers. Many of the currently available books on
computer performance analysis fall into one of three distinct camps:

1. Books that discuss tuning the performance of a particular platform, e.g.,
Linux, Solaris, Windows. These books explain how you can turn individual
software “knobs” with the hope that this will tune your platform.

2. Books that emphasize formal queueing theory under the rubric of perfor-
mance modeling. These books are written by mathematicians for mathe-
maticians and therefore are burdened with too much Greek for the average
IT professional to suffer through.

3. Books that employ queueing theory without the Greek but the perfor-
mance models are unrealistic because they are essentially academic toys.

Each of these categories has pedagogic merit, but the focus tends to be on
detailed particulars that are not easily generalized to a different context. These
days, IT professionals are required to be versed in more than one platform or
technology. It seemed to me that the best way to approach the performance
analysis of such a panoply is to adopt a system perspective. The system view
also provides an economy of thought. Understanding gained on one system can
often be applied to another. Successful performance analysis on one platform
often translates successfully to another, with little extra effort. Expressed in
today’s vernacular—learn once, apply often.

Second, I wanted to present system performance principles in the con-
text of a software tool, Pretty Damn Quick c© (PDQ), that can be applied
quickly to address performance issues as they arise in today’s hectic business
environment. In order to meet the pressures of ever-shortening time horizons,
performance analysis has to be done in zero time. Project managers cannot

viii Preface

and will not allow their schedules to be stretched by what they perceive as
inflationary performance analysis. A performance analysis tool based on a
scripting language helps to meet these severe time constraints by avoiding the
need to wrestle with compilers and debuggers.

Why Perl?

Defending the choice of a programming language is always a losing proposi-
tion, but in a recent poll on slashdot.org, Perl (Practical Extraction and
Reporting Language,) was ranked third after Bourne shell and Ruby in terms
of ease of use for accomplishing a defined set of tasks with a scripting language.
Python, Tcl, and Awk, came in fifth, seventh, and eighth respectively, while
Java (interpreted but not a scripting language) came in last. Neither Mathe-
maticanor PHP were polled. On a more serious note, John Ousterhout (father
of Tcl), has written an essay (home.pacbell.net/ouster/scripting.html)
on the general virtues of scripting languages for prototyping. Where he says
prototyping, I would substitute the word modeling.

I chose Perl because it fitted the requirement of a rapid prototyping lan-
guage for computer performance analysis. The original implementation of
PDQ was in C (and still is as far as the library functions are concerned).
To paraphrase a leading unixTM developer, one of the disadvantages of the C
language is that you can spend a lot of time in the debugger when you stab
yourself with a misreferenced pointer. Perl has a C-like syntax but is much
more forgiving at runtime. Moreover, Perl has arguably become the most
ubiquitous of the newer-generation scripting languages, including MacPerl
on MacOS (prior to MacOS X). One reason for Perl’s ubiquity is that it is
designed for extracting text and data from files. Why not for extracting per-
formance data? It therefore seemed like a good choice to offer a Perl version of
PDQ as an enhancement to the existing toolset of system administrators. By
a happy coincidence, several students, who were also system administrators,
began asking me if PDQ could be made available in Perl. So, here it is. Bonne
programmation!

How should PDQ be used? In my view, the proper analysis of computer
performance data requires a conceptual framework within which the informa-
tion hidden in those data can be revealed. That is the role of PDQ. It provides
a framework of expectations in which to assess data. If you do performance
analysis without such a framework (as is all too common), how can you know
when you are wrong? When your conclusion does not reconcile with the data,
you must stop and find where the inconsistency lies. It is much easier to detect
inconsistencies when you have certain expectations. Setting some expectations
(even wrong ones) is far better than not setting any.

I sometimes liken the role of PDQ to that of a subway map. A subway
map has two key properties. It is an abstract representation of the real sit-
uation in that the distances between train stations are not in geographical

Preface ix

proportion, and it is simple because it is uncluttered by unimportant real-
world physical details. The natural urge is to create a PDQ “map” adorned
with an abundance of physical detail because that would seem to constitute a
more faithful representation of the computer system being analyzed. In spite
of this urge, you should strive instead to make your PDQ models as simple
and abstract as a subway map. Adding complexity does not guarantee ac-
curacy. Unfortunately, there is no simple recipe for constructing PDQ maps.
Einstein reputedly said that things should be as simple as possible, but no
simpler. That should certainly be the goal for applying PDQ, but like drawing
any good map there are aspects that remain more in the realm of art than
science. Those aspects are best demonstrated by example, and that is the
purpose of Part II of this book.

Book Structure

Very simply, this book falls into two parts, so that the typical rats-nest dia-
gram of chapter dependencies is rendered unnecessary.

Part I explains the fundamental metrics used in computer performance
analysis. Chapter 1 discusses the zeroth metric, time, that is common to all
performance analysis. This chapter is recommended reading for those new to
computer performance analysis but may be skipped in a first reading by those
more familiar performance analysis concepts. The queueing concepts encoded
in PDQ tool are presented in Chaps. 2, 3, and 5, so these chapters may also
be read sequentially.

For those familiar with unix platforms, a good place to start might be
Chap. 4 where the connection between queues (buffers) and the load average
metric is dissected at the kernel level. Linux provides the particular context
because the source code is publicly available to be dissected—on the Web,
no less! The generalization to other operating systems should be obvious.
Similarly, another starting point for those with a unix orientation could be
Appendix B A Short History of Buffers (pun intended) which summarizes
the historical interplay between queueing theory and computer performance
analysis, commencing with the ancestors of unix viz. CTSS and Multics.

Irrespective of the order you choose to read them, none of the chapters in
Part I requires a knowledge of formal probability theory or stochastic meth-
ods. Thus, we avoid the torrent of Greek that otherwise makes very powerful
queueing concepts incomprehensible to those readers who would actually ben-
efit from them most. Any performance analysis terminology that is unfamiliar
can most likely be found in the Glossary (Appendix A).

Part II covers a wide variety of examples demonstrating how to apply
PDQ. These include the performance analysis of multicomputer architectures
in Chap. 7, analyzing benchmark results in Chap. 8, client/server scalability
in Chap. 9, and Web-based applications in Chap. 10. These chapters can be

x Preface

read in any order. Dependencies on other chapters are cross-referenced in the
text.

Chapter 6 (Pretty Damn Quick (PDQ)—A Slow Introduction) contains
the PDQ driver’s manual and, because it is a reference manual, can be read
independently of the other chapters. It also contains many examples that were
otherwise postponed from Chaps. 2–5.

Appendix F contains the steps for installing Perl PDQ together with a
complete list of the Perl programs used in this book. The more elementary of
these programs are specially identified for those unfamiliar with writing Perl
scripts.

Classroom Usage

This book grew out of class material presented at both academic institutions
and corporate training facilities. In that sense, the material is pitched at the
graduate or mature student level and could be covered in one or two semesters.

Each chapter has a set of exercises at the end. These exercises are in-
tended to amplify key points raised in the chapter, but instructors could also
complement them with questions of their own. I anticipate compiling more ex-
ercises and making them available on my Web site (www.perfdynamics.com).
Solutions to selected exercises can be found in Appendix H.

Key points that should be retained by both students and practitioners are con-
tained in a box like this one.

Prerequisites and Limitations

This is a book about performance analysis, not performance tuning. The world
is already full of books explaining how to tune this or that application on this
or that platform. Whereas performance tuning is about particulars, the power
of performance analysis comes from discerning general principals. General
principals are often best detected at the system level. The payoff is that a
generalizable analysis technique learned once will find application in solving
a wide variety of future performance problems.

Good analysis requires clarity of thought, and clear thinking benefits from
the structure of formalism. The formalism used throughout this book is queue-
ing theory or what might be more accurately termed queueing theory lite. By
that I mean the elements of queueing theory are presented in a minimalist
style without the need for penetrating many of the complexities of mathemat-
ical queueing theory, but without loss of correctness. That said, a knowledge
of mathematics at the level of high-school algebra is assumed throughout the

Preface xi

text (it is hard to imagine doing any kind of meaningful performance anal-
ysis without it), and those readers exposed to introductory probability and
calculus will find most of the concepts transparent.

Queueing theory algorithms are encoded into PDQ. This frees the perfor-
mance analyst to focus on the application of queueing concepts to the problem
at hand. Inevitably, there is a price for this freedom. The algorithms contain
certain assumptions that facilitate the solution of queueing models. One of
these is the Poisson assumption. In probability theory, the Poisson distribu-
tion is associated with events which are statistically random (like the clicks
of a Geiger counter). PDQ assumes that arrivals into a queue and departures
from the service center are random. How well this assumption holds up against
behavior of a real computer system will impact the accuracy of your analysis.

In many cases, it holds up well enough that the assumption does not need
to be scrutinized. More often, the accuracy of your measurements is the more
important issue. All measurements have errors. Do you know the magnitude
of the errors in your performance data? See Sect. D.7 in Appendix D. In
those cases where there is doubt about the Poisson assumption, Sect. D.8 of
Appendix D provides a test together with a Perl script to analyze your data
for randomness. One such case is packet queueing.

Internet packets, for example, are known to seriously violate the Poisson
assumption [See Park and Willinger 2000]. So PDQ cannot be expected to
give accurate performance predictions in that case, but as long as the perfor-
mance analysis is conducted at the transaction or connection level (as we do
in Chap. 10), PDQ is applicable. For packet level analysis, alternative perfor-
mance tools such simulators (see e.g., NS-2 http://www.isi.edu/nsnam/ns/)
are a better choice. One has to take care, however, not to be lulled into a false
sense of security with simulators. A simulation is assumed to be more accu-
rate because it allows you to construct a faithful representation of the real
computer system by accounting for every component—sometimes including
the proverbial kitchen sink. The unstated fallacy is that complexity equals
completeness. An example of the unfortunate consequences that can ensure
from ignoring this point is noted in Sect. 1.7.

Even in the era of simulation tools, you still need an independent frame-
work to validate the results. PDQ can fulfill that role. Otherwise, your simula-
tion stands in danger of being just another pseudo-random number generator.
That PDQ can act like an independent framework in which to assess your
data (be it from measurement or simulation) is perhaps its most important
role. In that sense, the very act of modeling can be viewed as an organizing
principle in its own right. A fortiori, the insights gained by merely initiating
the construction of a PDQ model may be more important than the results it
produces.

xii Preface

Acknowledgments

Firstly, I would like to thank the alumni of my computer performance analysis
classes, including Practical Performance Methods given at Stanford University
(1997–2001), UCLA Extension Course 819.328 Scalable Server Performance
and Capacity Planning, the many training classes given at major corporations,
and the current series Guerrilla Capacity Planning sponsored by Performance
Dynamics. Much of their feedback has found its way into this book. My Stan-
ford classes replaced those originally given by Ed Lazowska, Ken Sevcik, and
John Zahorjan. I finally attended their 1993 Stanford class, several years af-
ter reading their classic text [Lazowska et al. 1984]. Their approach inspired
mine.

Peter Harding deserves all the credit for porting my C implementation of
PDQ to Perl. Several people said they would do it (including myself), but
only Peter delivered.

Ken Christensen, Robert Lane, David Latterner, and Pedro Vazquez re-
viewed the entire manuscript and made many excellent suggestions that im-
proved the final content. Jim Brady and Steve Jenkin commented on Ap-
pendix C and Chap. 4, respectively. Ken Christensen also kindly provided me
with a copy of Erlang’s first paper. An anonymous reviewer helped tidy up
some of the queue-theoretic discussion in Chaps. 2 and 3. Myron Hlynka and
Peter Taylor put my mind at rest concerning the recent controversial claim
that Jackson’s 50-year-old theorem (Chap. 3) was invalid.

Giordano Beretta rendered his expert scientific knowledge of image pro-
cessing as well as a monumental number of hours of computer labor to improve
the quality of the illustrations. His artistic flair reveals itself in Fig. 2.1. An-
drew Trevorrow deserves a lot of thanks, not only for porting and maintaining
the OzTEX implementation of LATEX2ε on MacOS, but for being very respon-
sive to email questions. The choice of OzTEX was key to being able to produce
camera-ready copy in less than a year. Mirko Fluher kindly provided remote
access to his Linux system in Melbourne, Australia.

It is a genuine pleasure to acknowledge the cooperation and patience of
my editor Ralf Gerstner, as well as the excellent technical support of Frank
Holzwarth and Jacqueline Lenz at Springer-Verlag in Heidelberg. Tracey
Wilbourn meticulously copyedited the penultimate manuscript and Michael
Reinfarth of LE-TeX GbR in Leipzig handled the final production of the book.

Aline and Topin Dawson provided support and balance during the other-
wise intense solitary hours spent composing this book. My father tolerated
several postponed trans-Pacific visits during the course of this project. Only
someone 95 years young has that kind of patience.

I would also like to take this opportunity to thank the many diligent read-
ers who contributed to the errata for Practical Performance Analyst [Gun-
ther 2000a]. In alphabetical order they are: M. Allen, A. Bondi, D. Chan,
K. Christensen, A. Cockcroft, L. Dantzler, V. Davis, M. Earp, W.A. Gun-
ther, I.S. Hobbs, P. Kraus, R. Lane, T. Lange, P. Lauterbach, C. Millsap,

Preface xiii

D. Molero, J. A. Nolazco-Flores, W. Pelz and students, H. Schwetman, P. Sin-
clair, D. Tran, B. Vestermark, and Y. Yan. I trust the errata for this book
will be much shorter.

And finally to you, dear reader, thank you for purchasing this book and
reading this far. Don’t stop now!

Warranty Disclaimer

No warranties are made, express or implied, that the information in this book
and the associated computer programs are error free, or are consistent with
any particular standard of merchantability, or that they will meet your re-
quirements for any particular application. They should not be relied upon for
solving a problem the incorrect solution of which could result in injury to
a person or loss of property. The author disclaims all liability for direct or
consequential damages resulting from the use of this book.

Palomares Hills, California N.J.G.
July, 2004

Contents

Preface . vii

Part I Theory of System Performance Analysis

1 Time—The Zeroth Performance Metric . 3
1.1 Introduction . 3
1.2 What Is Time? . 4

1.2.1 Physical Time. 5
1.2.2 Synchronization and Causality 5
1.2.3 Discrete and Continuous Time 6
1.2.4 Time Scales . 6

1.3 What Is a Clock? . 8
1.3.1 Physical Clocks . 8
1.3.2 Distributed Physical Clocks . 9
1.3.3 Distributed Processing . 9
1.3.4 Binary Precedence . 10
1.3.5 Logical Clocks . 10
1.3.6 Clock Ticks . 12
1.3.7 Virtual Clocks . 13

1.4 Representations of Time . 14
1.4.1 In the Beginning . 14
1.4.2 Making a Date With Perl . 15
1.4.3 High-Resolution Timing . 17
1.4.4 Benchmark Timers . 18
1.4.5 Crossing Time Zones . 19

1.5 Time Distributions . 21
1.5.1 Gamma Distribution . 22
1.5.2 Exponential Distribution . 22
1.5.3 Poisson Distribution . 24
1.5.4 Server Response Time Distribution 25

xvi Contents

1.5.5 Network Response Time Distribution 26
1.6 Timing Chains and Bottlenecks . 28

1.6.1 Bottlenecks and Queues . 30
1.6.2 Distributed Instrumentation . 30
1.6.3 Disk Timing Chains . 31
1.6.4 Life and Times of an NFS Operation 32

1.7 Failing Big Time . 33
1.7.1 Hardware Availability . 34
1.7.2 Tyranny of the Nines . 34
1.7.3 Hardware Reliability . 35
1.7.4 Mean Time Between Failures 36
1.7.5 Distributed Hardware . 38
1.7.6 Components in Series . 38
1.7.7 Components in Parallel . 38
1.7.8 Software Reliability . 39

1.8 Metastable Lifetimes . 39
1.8.1 Microscopic Metastability . 40
1.8.2 Macroscopic Metastability . 43
1.8.3 Metastability in Networks . 43
1.8.4 Quantumlike Phase Transitions 45

1.9 Review . 45
Exercises . 46

2 Getting the Jump on Queueing . 47
2.1 Introduction . 47
2.2 What Is a Queue? . 48
2.3 The Grocery Store—Checking It Out . 48

2.3.1 Queueing Analysis View . 49
2.3.2 Perceptions and Deceptions . 50
2.3.3 The Post Office—Snail Mail . 51

2.4 Fundamental Metric Relationships . 51
2.4.1 Performance Measures . 52
2.4.2 Arrival Rate . 53
2.4.3 System Throughput . 55
2.4.4 Nodal Throughput . 56
2.4.5 Relative Throughput . 56
2.4.6 Service Time . 57
2.4.7 Service Demand . 58
2.4.8 Utilization . 58
2.4.9 Residence Time . 59

2.5 Little’s Law Means a Lot . 59
2.5.1 A Little Intuition . 60
2.5.2 A Visual Proof . 61
2.5.3 Little’s Microscopic Law . 66
2.5.4 Little’s Macroscopic Law . 66

Contents xvii

2.6 Unlimited Request (Open) Queues . 67
2.6.1 Single Server Queue . 67
2.6.2 Measured Service Demand . 68
2.6.3 Queueing Delays . 68
2.6.4 Twin Queueing Center . 73
2.6.5 Parallel Queues . 74
2.6.6 Dual Server Queue—Heuristic Analysis 76

2.7 Multiserver Queue . 79
2.7.1 Erlang’s C Formula . 80
2.7.2 Accuracy of the Heuristic Formula 82
2.7.3 Erlang’s B Formula . 83
2.7.4 Erlang Algorithms in Perl . 84
2.7.5 Dual Server Queue—Exact Analysis 86

2.8 Limited Request (Closed) Queues . 88
2.8.1 Closed Queueing Center . 88
2.8.2 Interactive Response Time Law 89
2.8.3 Repairman Algorithm in Perl 90
2.8.4 Response Time Characteristic 92
2.8.5 Throughput Characteristic . 93
2.8.6 Finite Response Times . 94
2.8.7 Approximating a Closed Queues 95

2.9 Shorthand for Queues . 99
2.9.1 Queue Schematics . 99
2.9.2 Kendall Notation . 100

2.10 Comparative Performance . 101
2.10.1 Multiserver Versus Uniserver . 102
2.10.2 Multiqueue Versus Multiserver 102
2.10.3 The Envelope Please! . 104

2.11 Generalized Servers . 105
2.11.1 Infinite Capacity (IS) Server . 106
2.11.2 Exponential (M) Server . 107
2.11.3 Deterministic (D) Server . 108
2.11.4 Uniform (U) Server . 108
2.11.5 Erlang-k (Ek) Server . 108
2.11.6 Hypoexponential (Hypo–k) Server 109
2.11.7 Hyperexponential (Hk) Server 109
2.11.8 Coxian (Cox–k) Server . 110
2.11.9 General (G) Server . 111
2.11.10 Pollaczek–Khintchine Formula 112
2.11.11 Polling Systems . 113

2.12 Review . 115
Exercises . 116

xviii Contents

3 Queueing Systems for Computer Systems 119
3.1 Introduction . 119
3.2 Types of Circuits . 120
3.3 Poisson Properties . 122

3.3.1 Poisson Merging . 122
3.3.2 Poisson Branching . 123
3.3.3 Poisson Pasta . 123

3.4 Open-Circuit Queues . 124
3.4.1 Series Circuits . 125
3.4.2 Feedforward Circuits . 125
3.4.3 Feedback Circuits . 126
3.4.4 Jackson’s Theorem . 129
3.4.5 Parallel Queues in Series . 131
3.4.6 Multiple Workloads in Open Circuits 135

3.5 Closed-Circuit Queues . 136
3.5.1 Arrival Theorem . 136
3.5.2 Iterative MVA Algorithm . 138
3.5.3 Approximate Solution . 139

3.6 Visit Ratios and Routing Probabilities 140
3.6.1 Visit Ratios and Open Circuits 142
3.6.2 Visit Ratios and Closed Circuits 143

3.7 Multiple Workloads in Closed Circuits 144
3.7.1 Workload Classes . 144
3.7.2 Baseline Analysis . 145
3.7.3 Aggregate Analysis . 146
3.7.4 Component Analysis . 150

3.8 When Is a Queueing Circuit Solvable? . 151
3.8.1 MVA Is a Style of Thinking . 152
3.8.2 BCMP Rules . 153
3.8.3 Service Classes . 154

3.9 Classic Computer Systems . 155
3.9.1 Time-Share Scheduler . 155
3.9.2 Fair-Share Scheduler . 157
3.9.3 Priority Scheduling . 158
3.9.4 Threads Scheduler . 160

3.10 What Queueing Models Cannot Do . 161
3.11 Review . 163
Exercises . 164

4 Linux Load Average—Take a Load Off! . 167
4.1 Introduction . 167

4.1.1 Load Average Reporting . 168
4.1.2 What Is an “Average” Load? 169

4.2 A Simple Experiment . 170
4.2.1 Experimental Results . 172

Contents xix

4.2.2 Submerging Into the Kernel . 173
4.3 Load Calculation . 174

4.3.1 Fixed-Point Arithmetic . 175
4.3.2 Magic Numbers . 176
4.3.3 Empty Run-Queue . 178
4.3.4 Occupied Run-Queue . 179
4.3.5 Exponential Damping . 180

4.4 Steady-State Averages . 183
4.4.1 Time-Averaged Queue Length 184
4.4.2 Linux Scheduler Model . 184

4.5 Load Averages and Trend Visualization 187
4.5.1 What Is Wrong with Load Averages 187
4.5.2 New Visual Paradigm . 187
4.5.3 Application to Workload Management 189

4.6 Review . 190
Exercises . 190

5 Performance Bounds and Log Jams . 191
5.1 Introduction . 191
5.2 Out of Bounds in Florida . 191

5.2.1 Load Test Results . 192
5.2.2 Bottlenecks and Bounds . 192

5.3 Throughput Bounds . 193
5.3.1 Saturation Throughput . 193
5.3.2 Uncontended Throughput . 194
5.3.3 Optimal Load . 195

5.4 Response Time Bounds . 196
5.4.1 Uncontended Response Time . 196
5.4.2 Saturation Response Time . 196
5.4.3 Worst–Case Response Bound 197

5.5 Meanwhile, Back in Florida . 198
5.5.1 Balanced Bounds . 199
5.5.2 Balanced Demand . 199
5.5.3 Balanced Throughput . 199

5.6 The X–Files: Encounters with Performance Aliens 201
5.6.1 X-Windows Architecture . 201
5.6.2 Production Environment . 202

5.7 Close Encounters of the Performance Kind 202
5.7.1 Close Encounters I: Rumors . 202
5.7.2 Close Encounters II: Measurements 203
5.7.3 Close Encounters III: Analysis 203

5.8 Performance Aliens Revealed . 205
5.8.1 Out of Sight, Out of Mind . 205
5.8.2 Log–Jammed Performance . 207
5.8.3 To Get a Log You Need a Tree 208

xx Contents

5.9 X-Windows Scalability . 210
5.9.1 Measuring Sibling X-Events . 210
5.9.2 Superlinear Response . 211

5.10 Review . 212
Exercises . 212

Part II Practice of System Performance Analysis

6 Pretty Damn Quick (PDQ)—A Slow Introduction 215
6.1 Introduction . 215
6.2 How to Build PDQ Circuits . 215
6.3 Inputs and Outputs . 215

6.3.1 Setting Up PDQ . 216
6.3.2 Some General Guidelines . 218

6.4 Simple Annotated Example . 219
6.4.1 Creating the PDQ Model . 219
6.4.2 Reading the PDQ Report . 221
6.4.3 Validating the PDQ Model . 222

6.5 Perl PDQ Module . 223
6.5.1 PDQ Data Types . 223
6.5.2 PDQ Global Variables . 224
6.5.3 PDQ Functions . 225

6.6 Function Synopses . 225
6.6.1 PDQ::CreateClosed . 225
6.6.2 PDQ::CreateMultiNode . 226
6.6.3 PDQ::CreateNode . 226
6.6.4 PDQ::CreateOpen . 227
6.6.5 PDQ::CreateSingleNode . 228
6.6.6 PDQ::GetLoadOpt . 228
6.6.7 PDQ::GetQueueLength . 229
6.6.8 PDQ::GetResidenceTime . 229
6.6.9 PDQ::GetResponse . 230
6.6.10 PDQ::GetThruMax . 231
6.6.11 PDQ::GetThruput . 231
6.6.12 PDQ::GetUtilization . 232
6.6.13 PDQ::Init . 232
6.6.14 PDQ::Report . 233
6.6.15 PDQ::SetDebug . 234
6.6.16 PDQ::SetDemand . 235
6.6.17 PDQ::SetTUnit . 236
6.6.18 PDQ::SetVisits . 236
6.6.19 PDQ::SetWUnit . 237
6.6.20 PDQ::Solve . 237

6.7 Classic Queues in PDQ. 238

Contents xxi

6.7.1 Delay Node in PDQ . 238
6.7.2 M/M/1 in PDQ. 238
6.7.3 M/M/m in PDQ . 239
6.7.4 M/M/1//N in PDQ . 239
6.7.5 M/M/m//N in PDQ . 240
6.7.6 Feedforward Circuits in PDQ 240
6.7.7 Feedback Circuits in PDQ . 242
6.7.8 Parallel Queues in Series . 244
6.7.9 Multiple Workloads in PDQ . 246
6.7.10 Priority Queueing in PDQ . 252
6.7.11 Load-Dependent Servers in PDQ 258
6.7.12 Bounds Analysis with PDQ . 263

6.8 Review . 264
Exercises . 264

7 Multicomputer Analysis with PDQ . 267
7.1 Introduction . 267
7.2 Multiprocessor Architectures . 268

7.2.1 Symmetric Multiprocessors . 269
7.2.2 Multiprocessor Caches . 270
7.2.3 Cache Bashing . 271

7.3 Multiprocessor Models . 272
7.3.1 Single-Bus Models . 273
7.3.2 Processing Power . 274
7.3.3 Multiple-Bus Models . 276
7.3.4 Cache Protocols . 278
7.3.5 Iron Law of Performance . 287

7.4 Multicomputer Models . 289
7.4.1 Parallel Query Cluster . 290
7.4.2 Query Saturation Method . 294

7.5 Review . 298
Exercises . 299

8 How to Scale an Elephant with PDQ . 301
8.1 An Elephant Story . 301

8.1.1 What Is Scalability? . 302
8.1.2 SPEC Multiuser Benchmark . 303
8.1.3 Steady-state Measurements . 305

8.2 Parts of the Elephant . 306
8.2.1 Service Demand Part . 307
8.2.2 Think Time Part . 307
8.2.3 User Load Part . 308

8.3 PDQ Scalability Model . 308
8.3.1 Interpretation . 311
8.3.2 Amdahl’s Law . 312

xxii Contents

8.3.3 The Elephant’s Dimensions . 314
8.4 Review . 315
Exercises . 315

9 Client/Server Analysis with PDQ . 317
9.1 Introduction . 317
9.2 Client/Server Architectures . 318

9.2.1 Multitier Environments . 319
9.2.2 Three–Tier Options . 319

9.3 Benchmark Environment . 321
9.3.1 Performance Scenarios . 322
9.3.2 Workload Characterization . 322
9.3.3 Distributed Workflow . 324

9.4 Scalability Analysis with PDQ . 325
9.4.1 Benchmark Baseline . 326
9.4.2 Client Scaleup . 333
9.4.3 Load Balancer Bottleneck . 334
9.4.4 Database Server Bottleneck . 334
9.4.5 Production Client Load . 335
9.4.6 Saturation Client Load . 336
9.4.7 Per-Process Analysis . 338

9.5 Review . 339
Exercises . 339

10 Web Application Analysis with PDQ . 341
10.1 Introduction . 341
10.2 HTTP Protocol . 341

10.2.1 HTTP Performance . 346
10.2.2 HTTP Analysis Using PDQ . 347
10.2.3 Fork-on-Demand Analysis . 348
10.2.4 Prefork Analysis . 349

10.3 Two-Tier PDQ Model . 355
10.3.1 Data and Information Are Not the Same 355
10.3.2 HTTPd Performance Measurements 355
10.3.3 Java Performance Measurements 357

10.4 Middleware Analysis Using PDQ . 357
10.4.1 Active Client Threads . 359
10.4.2 Load Test Results . 359
10.4.3 Derived Service Demands . 360
10.4.4 Naive PDQ Model . 360
10.4.5 Adding Hidden Latencies in PDQ 365
10.4.6 Adding Overdriven Throughput in PDQ. 366

10.5 Review . 370
Exercises . 370

Contents xxiii

Part III Appendices

A Glossary of Terms . 373

B A Short History of Buffers . 385

C Thanks for No Memories . 391
C.1 Life in the Markov Lane . 391
C.2 Exponential Invariance . 392
C.3 Shape Preservation . 394
C.4 A Counterexample . 394

D Performance Measurements and Tools . 397
D.1 Performance Counters and Objects . 397
D.2 Java Bytecode Instrumentation . 397
D.3 Generic Performance Tools . 398
D.4 Displaying Performance Metrics . 398
D.5 Storing Performance Metrics . 401
D.6 Performance Prediction Tools . 401
D.7 How Accurate are Your Data? . 402
D.8 Are Your Data Poissonian? . 402
D.9 Performance Measurement Standards . 407

E Compendium of Queueing Equations . 409
E.1 Fundamental Metrics . 409
E.2 Queueing Delays . 410

F Installing PDQ and PerlPrograms . 411
F.1 Perl Scripts . 411
F.2 PDQ Scripts . 412
F.3 Installing the PDQ Module . 412

G Units and Abbreviations . 415
G.1 SI Prefixes . 415
G.2 Time Suffixes . 415
G.3 Capacity Suffixes . 415

H Solutions to Selected Exercises . 417

Bibliography . 421

Index .427

Part I

Theory of System Performance Analysis

1

Time—The Zeroth Performance Metric

1.1 Introduction

Time is the basis of all computer performance management (Fig. 1.1). It is
so fundamental that it could be called the zeroth-order performance metric.
In the context of computer performance analysis, time manifests itself in a
multitude of metrics like service time, response time, round-trip time, mem-
ory latency, and mean time to failure, to name just a few. In view of this
variety, it would seem fitting to open a book on performance analysis with a
review of these various performance metrics. Surprisingly, there seems to be
no precedent for such a discussion in any of the readily available textbooks
on computer performance analysis. It is about time someone provided a brief
discourse about time, and that is what we offer in this chapter.

Performance
Analysis

Performance
Monitoring

Performance
Prediction

Past Present Future

Fig. 1.1. Three aspects of performance management depicted according to the
timespan they cover. Performance monitoring (black) is narrow and suffers mostly
from systematic errors. Performance analysis (dark gray) introduces slightly more
error because it derives new quantities from historical data. Performance prediction
amplifies both these error sources and others into future projections

This chapter covers a wide range of concepts about time and related metrics.
The reader should be aware that not all the definitions are treated in equal
depth. The four major topics covered in this chapter are types of clocks and

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_1, © Springer-Verlag Berlin Heidelberg 2005

4 1 Time—The Zeroth Performance Metric

timescales, response time measurement, metrics for assessing computer relia-
bility, and the performance impact of metastable lifetimes on both computer
chips and computer systems.

We begin by reviewing definitions of time. Since time is actually quite a
subtle concept, we start out with some basic dictionary definitions, and then
move on to refine these simple definitions to meet the more stringent require-
ments of computer system performance analysis. This leads us into considera-
tions about time and its measurement with clocks, both physical and virtual.
This is especially important to understand in the context of synchronizing
distributed computer systems. We close the section on time with a brief dis-
cussion of computing time scales. An understanding of the shear breadth of
computing time scales is fundamental to the way we do performance analysis
and modeling.

The second major topic we cover is the variety of response time metrics
and their corresponding measurement distributions. Rather than elaborate on
the various statistical distributions used to model response characteristics, we
refer the reader to the statistical tools and documentation readily available in
commonly used spreadsheet software packages. The exponential distribution
is seen to play a pivotal role in modeling response times.

The next major topic covers metrics used to assess uptime, availability, and
related formal concepts in reliability models. These metrics are very important
in the analysis of large-scale commercial computing systems. A key metric
is the mean time between failures, which takes us into our final topic, the
metastability of computer components and systems [see also Gunther 2000a,
Part III]. This is another area that is often overlooked in most books on
computer performance analysis. Metastability can have a significant impact
on computer system performance.

1.2 What Is Time?

One place to start refining our various notions of time is a dictionary. The
online Merriam-Webster dictionary (http://www.m-w.com/) states:

Main Entry: time
Pronunciation: ‘tIm
Function: noun
Etymology: Middle English, from Old English tIma ; akin to Old Norse tImi
time, Old English tId – see TIDE
1a: the measured or measurable period during which an action, process, or
condition exists or continues : duration 1b: a nonspatial continuum that is
measured in terms of events which succeed one another from past through
present to future.
2: the point or period when something occurs : occasion . . .
4a: an historical period . . .
8a: a moment, hour, day, or year as indicated by a clock or calendar.
8b: any of various systems (as sidereal or solar) of reckoning time.

1.2 What Is Time? 5

9a: one of a series of recurring instances or repeated actions.

Performance analysts need more precise definitions than these. We begin by
reviewing notions about physical time and its measurement using physical
clocks. Later, we shall extend the definitions of physical time and physical
clocks to include logical time and logical clocks.

1.2.1 Physical Time

The concept of time is fundamental, but it is also elusive. Much of the modern
era in physics has been preoccupied with rethinking our concepts of time, most
notably through Einstein’s theories of relativity. One of the most significant
outcomes of that relativistic view is the intimate relationship between space
and time. At extremely short distances, say the size of an electron (about
10−15 m), space and time become an inseparable four-dimensional contin-
uum. At extremely large distances, say the size of the universe (about 10+26

m), the expansion (and possibly eventual collapse) of the universe may be
responsible for the apparent direction of time [Gold 1967, Hawking 1988]. But
these fundamental properties of physical time lie well outside those that are
needed to analyze the operation of computer systems, so we shall not pursue
them any further.

In computer performance analysis we are more concerned with the mea-
surement of timescales related to various computational operations. In this
context, Mills [1992] provides the following definitions. The time of an event
is an abstraction that determines the ordering of events in a given temporal
frame of reference or time-scale. A physical clock is a stable oscillator, or fre-
quency generator, together with a counter that records the number of cycles
since being initialized at a given time. The value of the counter at any time
t is called its epoch and is recorded as the time stamp T (t) of that epoch. In
general, epochs are not continuous and depend on the precision of the counter.

1.2.2 Synchronization and Causality

Humans make plans on the basis of time. The key concept of time that per-
mits such planning is the notion of global time. Humans reckon global time
from loosely synchronized physical clocks such as wrist watches. To synchro-
nize clocks means to match them in both frequency and time. In order to
synchronize physical clocks, there must be some common frame of reference
for comparing both time and frequency.

Among the possible frames of reference for synchronizing clocks are the
human heartbeat, the pendulum, and astronomical oscillators such as the sun,
the moon, other planets, and even more exotic cosmological objects, such
as pulsars. Unfortunately, the frequencies of these oscillators are relatively

6 1 Time—The Zeroth Performance Metric

unstable and are not always precisely known. Instead, the ultimate reference
oscillator has been chosen by international agreement to be a synthesis of
multiple observations of certain atomic transitions of hydrogen, cesium, and
rubidium. Local clocks used in computer systems and networks tend to use
crystal oscillators. Some of the more important (and not completely solved)
issues arise in computing environments where clocks need to be distributed.
There, one must take into account the range of latencies incurred by both
remote computation and remote communication.

1.2.3 Discrete and Continuous Time

A common distinction that arises in performance analysis and performance
modeling is that between discrete and continuous time. The difference can be
thought of using the following simple analogy. Consider a conventional clock
that has a seconds hand. On some clocks the seconds hand sweeps around the
face, while on others it jumps between each seconds mark. The first case is a
form of continuous time, the latter is closer to discrete time. In the latter case,
events can only occur when the hand is on a mark not in between. Throughout
most of this book we shall assume that clocks run continuously rather than
by discrete ticks. See e.g., Appendix C.

Discrete time approaches continuous time as the tick intervals become in-
finitesimally small. In a discrete time picture, moments in time are regarded as
distinct steps and any event can only occur at each time step. Further discus-
sion about discrete time and its importance for stochastic processes, queueing
theory, and simulation can be found respectively in such texts as Kleinrock
[1976], Bloch et al. [1998].

1.2.4 Time Scales

Current digital microprocessors and memories operate at nanosecond cycle
times although, at the time of writing, microprocessors are rapidly entering
the subnanosecond regime. A nanosecond is a period of time so short that it
is well outside our everyday experience, and that makes it impossibly small to
comprehend. For the computer performance analyst, however, it is important
to be equipped with a concept of relative timescales.

A nanosecond (10−9 s), or one billionth of a second, is an incomprehensi-
bly small amount of time that can be related to something incomprehensibly
fast—the speed of light. Light is capable of travelling roughly eight times
around the earth’s equator in one second or about a third of a gigameter per
second (2.997 × 108 m/s, to be exact). On a more human scale, a nanosec-
ond is the time it takes a light beam to travel the length of your forearm—
approximately one foot. This is a useful mnemonic because it accounts for why
computer system buses that operate at 1 GB/s transfer rates are restricted
to about one foot in length.

1.2 What Is Time? 7

Example 1.1. Some contemporary shared-memory multiprocessors support
memory buses capable of peak transfer rates of about 1 GB/s. What are
the engineering constraints imposed on a designer?

Current chip carrier pinouts limit data paths to about 128 bits or 16 bytes
in width. To support a bus with bandwidth of 1 GB/s, the bus clock frequency
needs to be

1024 MB
16 B

= 64 MHz,

or 64 mega cycles per second. Since a typical bus may be only two thirds
efficient, the designer would be wiser to use a 100-MHz bus clock which cor-
responds to a bus-cycle time of 10 × 10−9 seconds per cycle or a 10 ns cycle
time. Therefore, all devices that interface to the bus must settle in less than
10 ns.

About 60% of this 10 ns is required to drive voltage levels and to allow clock
skew. That only leaves about 4 nanoseconds to set the appropriate voltage
levels on the bus. It takes about 2 ns to propagate an electric signal on a bus
that is fully loaded capacitively with various devices (e.g., processor caches,
memory modules, I/O buses). That means that the maximum bus length
should be

4 ns
2 ns/ft

= 2 ft.

But it takes two phases to set the voltage levels (half in one direction, and the
other half on reflection). Therefore, the maximum advisable length is about
one foot. ��

It is also important for the performance analyst to have some feel for the
order-of-magnitude differences in timescales that operate inside a digital com-
puter. Table 1.1 is intended to capture some of these tremendous differences
by rating the various computer access times in terms of a nanosecond that
has been inflated to equal one second. The processor is taken to be an Intel
Pentium 4 with a clock frequency of 3.2 GHz which has a subnanosecond
instruction cycle time.
On this inflated scale we see that it takes about 15 min for a main memory
access, about 4 months for a disk access, almost 32 years for a simple database
transaction, and hundreds of years for a tape access.

An important consequence arises out of this huge range of timescales. We
do not need to take them all in to account when predicting the performance
of a computer system. Only those changes that occur on a timescale similar to
the quantity we are trying to predict will have the most impact on its value.
All other (i.e., faster) changes in the system can usually be ignored. They are
more likely to be part of the background noise rather than the main theme.

Example 1.2. In modeling the performance of a database system where the
response time is measured in seconds, it would be counterproductive to include
all the times for execution of every CPU instruction. ��

8 1 Time—The Zeroth Performance Metric

Table 1.1. Nominal computer access times scaled up to human proportions such
that one nanosecond is scaled up to one second. The upper portion of the table relates
CPU and memory speeds, while the lower portion refers to storage technologies with
progressively longer latencies

Computer Conventional Scaled
subsystem time unit time unit

CPU cycle 0.31 ns 0.31 s
L1 cache 0.31 ns 0.31 s
L2 cache 1.25 ns 1.25 s
Memory bus 2.00 ns 2.00 s
DRAM chip 60.00 ns 1.00 min
Disk seek 3.50 ms 1.35 month
NFS3 read 32.00 ms 1.01 year
RDBMS update 0.50 s 15.85 year
Tape access 5.00 s 1.59 century

Another way to think about this is from the standpoint of steady-state
conditions. When the measured value of a performance metric does not change
appreciably over the duration of the measurement interval, it is said to be at
its steady-state value. Using Example 1.2, as long as any changes occurring in
a computer subsystem have reached steady state on the timescale of interest,
the subsystem can either be ignored or aggregated with other subsystems in
a performance model. Similarly, the average service demand might be used to
represent the CPU time rather than evaluating it separately within an explicit
CPU model. In the time between the arrival of each transaction, it can safely
be assumed that the CPU has reached steady state.

1.3 What Is a Clock?

In this section we review the concept of a clock, both physical and logical,
as it pertains to measuring time in a distributed computing environment. We
shall see that certain common notions have to be refined and that there are
profound implications for performance analysis measurements.

1.3.1 Physical Clocks

As defined earlier, a physical clock is a combination of a stable oscillator
and a counter. The value of the counter at time t gives the epoch at time
stamp T (t). A local computer clock can be constructed in hardware from
some kind of oscillator or a stabilized phase-locked loop that consists of two
main components:

1. a controlled oscillator
2. a phase detector

1.3 What Is a Clock? 9

A more detailed discussion of these technicalities can be found in Mills [1992].
The stability of this physical clock is a measure of how well a clock main-

tains a constant frequency. Its accuracy refers to how well its frequency and
time compare to defined standards. Its precision refers to how accurately these
quantities can be maintained within a particular time-keeping system. In the
context of performance measurement in distributed computer environments,
clock stability can be more significant than clock synchronization [Dietz et al.
1995].

The clock offset is the time difference between two clocks. If we denote
this offset by the symbol Ω, then the clock skew is the change in clock offset
(or frequency difference) with respect to continuous time, and can be written
as the derivative dΩ/dt. The clock drift is the time variation in the skew or
the second derivative of the offset with respect to time d2Ω/dt2.

1.3.2 Distributed Physical Clocks

The preceding discussion of physical clocks implicitly assumes the clocks were
local. By analogy with the concept of a local clock, a system of distributed
clocks can be regarded as a set of coupled oscillators, each comprising two
main components:

1. a software update algorithm (that functions as a phase detector)
2. a local clock (that functions as a controlled oscillator)

This is the basis of network time protocol (NTP) discussed in Mills [1992].
Clock synchronization requires long periods with multiple comparisons

in order to maintain accurate timekeeping. The accuracy achieved is directly
related to the time taken to achieve it. Other distributed clock synchronization
protocols include DTS (Digital Time Service), TSP (Time Stamp Protocol),
and DCE (Distributed Computing Environment) Time Service.

1.3.3 Distributed Processing

A distributed system is comprised of a collection of processes that are typically
separated spatially. Processes coordinate with one another, via the exchange
of messages, to complete a computational task. Three types of actions can be
taken by a process:

1. compute (intraprocess)
2. send a message (interprocess)
3. receive a message (interprocess)

These actions can be taken asynchronously, i.e., a process that has sent a
message is not required to wait for acknowledgment to complete. Computation
generates a set of distributed events. To make progress toward a common
goal, it is necessary to know the causal relationship between events, e.g.,
process B cannot compute before the results of process A are available to it.

10 1 Time—The Zeroth Performance Metric

This requirement amounts to a form of causality in which A must precede B.
Causality can be regarded as a (binary) precedence relation.

1.3.4 Binary Precedence

We can define the binary relation (denoted by →) such that A → B means
event A “happened before” event B [Lamport 1978] or A “precedes” B in
time. Such a relation is transitive in that, if A → B and B → C, then A → C.
It is also assumed to be irreflexive in that an event preceding itself, A → A,
has no meaning in this context. Also, two events are defined to be concurrent
if A � B and B � A. These requirements define a partial ordering on the
set of all events {ei}.

Only a partial ordering of events is possible at this level since it may not
be possible, in general, to say which of A and B occurred first. Lamport [1978]
showed how total ordering could be achieved from this partial ordering. We
need to establish a total ordering of events for the purposes of synchronization,
especially in the case where there is a requirement for consistency of shared
data, as there is in any multiprocessor computer system. To maintain data
consistency, requests must be granted in the order in which they were issued.

1.3.5 Logical Clocks

Although physical time can be maintained to accuracies of a few tens of mil-
liseconds using protocols such as NTP [Mills 1992], this is not adequate for
capturing process precedence in distributed systems, which can occur on mi-
crosecond timescales. However, in a distributed computation, both progress
toward a common goal and the interprocess communication synchrony can be
accommodated using logical clocks. A logical clock can be implemented with

• • • • •

• • ••

2

21

1

1

3

4

3

4

5 6 7

7
• • • • ••

5

8 9

9

10 11

p1

p2

p3

Fig. 1.2. Procedure for local and global clock synchronization (adapted from Raynal
and Singhal [1996])

simple counters. There is no inherent or physical timing mechanism. Let the
logical clock C(e) be the time stamp (i.e., some positive integer) of the event
e. The logical clock function C(·) is a mapping of e to an element C(e) in the
time domain T . A logical clock satisfies the (weak) consistency condition:

e1 → e2 ⇒ C(e1) < C(e2) .

1.3 What Is a Clock? 11

In order for such a clock to tick consistently, it must come equipped with some
rules for consistently updating logical time. The following procedures provide
an example of the updating that must go on at both the local and a global
levels.

1. Local clock:
• Prior to executing an event (send, rcv, intraprocess), a process pi must

increment its local counter such that:
• Ci = Ci + 1.

2. Global clock:
• Each message carries the local clock value Ci of the sender process at

send time.
• The recipient process pj evaluates its counter as Cj = max(Ci, Cj).
• The recipient process updates its local clock according to local proce-

dure 1: Cj = Cj + 1.
• The recipient process then delivers the message.

Example 1.3. Referring to Fig. 1.2, each process has its own time line. Events
occurring within each process are shown as dots. Messages between events are
shown as arrows. Using the above rules, the second event of process p1 (the
second dot in Fig. 1.2) gets its time stamp from updating its local clock i.e.,
2(= 1 + 1). Similarly, the third event of process p1 updates the local clock to
generate a time stamp of 3(= 2 + 1).

The second event of process p1, however, requires sending a message to
process p2. The receipt of this message from p1 generates the second event for
process p2. Using the above rules, process p1 updates its clock from 1 to 2,
prior to sending the message, then p1 sends that value along with its message.
Prior to receiving the message from p1, process p2 would have computed its
local time to be 2(= 1 +1). Instead, it calculates the max(2, 2), which in this
case produces the same result. Next, according to procedure 2, p2 must now
update its own local clock to be 3(= 2 + 1) and finally deliver the message.

Later, p1 receives a message from event 7 of process p3. Process p3 sends the
message with its local time included. Process p1 then computes its local time.
Prior to receiving the message from p3, p1 would have computed its local time
as 4(= 3+1). Instead, it now computes its local time to be max(4, 7)+1 = 8.

Also, note the weak consistency between event 3 of process p1 and the
third event of process p2. The third event of process p2 computes its local
time stamp as 4. Hence, C1(e3) < C2(e3), but event 3 of p1 occurred after
event 3 of p2. ��

This still only provides a partial ordering since an ambiguity remains. Two
or more events belonging to different processes can have the same time stamp.
Such a circumstance appears in Fig. 1.2. The second dot of process p2 and
the third dot of process p1 have the same time stamp, 3. Such ambiguities can
be eliminated by using the process ID (or pid) since these are monotonically

12 1 Time—The Zeroth Performance Metric

increasing numbers. In this way, we can achieve a total ordering of events in
a distributed system.

Meeting the strong consistency condition:

e1 → e2 ⇔ C(e1) < C(e2) ,

requires a generalization from vector to tensor clocks [Raynal and Singhal
1996], whereby the local and global times are permanently stored and not
merged as they are in the scalar clock paradigm just described. This gener-
alization is used to ensure so-called “liveness” properties in distributed al-
gorithms, i.e., requests are time-stamped and serviced according to the total
order on these time stamps. This is essential for MIMD (multiple instruc-
tions multiple data) multiprocessor architectures that employ some form of
read–modify–write operation in which asynchronous processes communicate
by applying read, write, and read–modify–write operations to a shared mem-
ory.

A read-modify-write operation atomically reads a value v from a memory
location, writes back f(v), where f is a predefined function, and returns v
to the caller. Nearly all modern processor architectures support some form
of read-modify-write for interprocess synchronization. Common read-modify-
write instructions include:

• Test-and-Set
• Fetch-and-Add
• Compare-and-Swap
• Load-linked/Store-conditional

Other applications that require total ordering of events include distributed
tracing and debugging, distributed database checkpointing, maintaining con-
sistency in replicated databases, and deadlock avoidance and detection.

1.3.6 Clock Ticks

Every computer system has a fundamental interval of time defined by the
hardware clock. This hardware clock has a constant ticking rate, which is
used to synchronize everything on the system. To make this interval known to
the system, the clock sends an interrupt to the unixTM kernel on every clock
tick. The actual interval between these ticks depends on the type of platform.
Most unix systems have the CPU tick interval set to 10 ms of wall-clock time.

The specific tick interval is contained in a constant called HZ defined in a
system-specific header file called param.h. For example, the C code:

#define HZ 100

in the header file means that 1 s of wall-clock time is divided into 100 ticks.
Alternatively, a clock interrupt occurs once every 100th of a second or 1 tick
= 1 s / 100 = 10 ms. The constant labeled HZ should be read as frequency

1.3 What Is a Clock? 13

number, and not as the SI unit of frequency cycles per second. The latter
actually has the symbol Hz. We shall revisit this convention in Chap. 4.

Generic performance analysis tools are resident on all the major com-
puter operating systems. For example, some variants of the unixoperating
system have System Activity Reporter (SAR) [Peek et al. 1997, Musumeci and
Loukides 2002]. Other unix variants and the Linux operating system [Bovet
and Cesati 2001] has procinfo, vmstat. The Microsoft Windows 2000r© op-
erating system has a System Monitor [Friedman and Pentakalos 2002]. IBM
Multiple Virtual Storage (MVSr©, now z/OS r©) has Resource Measurement
Facility (RMF), and System Management Facility (SMF) [Samson 1997]. See
Appendix D for more details about performance tools.

Unfortunately, these generic performance tools do not possess the timing
resolution required for measuring high-frequency events accurately. Moreover,
tracing events at high frequency usually incurs high resource overhead in terms
of compute and I/O cycles.

The more efficient tradeoff that is usually adopted is to sample the coun-
ters that reside in the local operating system at a prescribed interval. Most
performance management tools work this way. A potentially serious drawback
to sampling (even at 100 times per second) is that the samples may be taken
on a clock edge. This can introduce errors as large as 20% or more in CPU
usage data, for example (see Sect. D.7). More recently, platform vendors have
started to introduce hardware-resident counters to gather event-triggered pro-
cess data at much higher clock resolution than is available from the operating
system alone [see, e.g., Cockcroft and Pettit 1998, Chap. 15, p. 420 ff.].

But sampling performance data across multiple operating system instances
on different servers (such as would appear in a typical distributed business
enterprise) introduces new difficulties when it comes to accurately determining
system-level performance metrics such as end-to-end response times. How do
you know that the clocks on each server are correctly synchronized and that
data samples are correctly ordered? Distributed timing protocols such as NTP
(Sect. 1.3.2) can help to resolve the correct ordering of sampled performance
data.

1.3.7 Virtual Clocks

For the sake of completeness we point out that virtual time should not be
confused with the discussion of logical time in Sect. 1.3.5. Virtual time is a
term that arises in the context of distributed discrete-event simulations and
an algorithm known as “Time Warp” that permits some of the above notions
of precedence (i.e., causality) to be violated under certain circumstances.

Under Time Warp, processes are permitted to proceed as rapidly as pos-
sible by advancing clocks without concern for possible violations of causality.
This approach introduces the possibility of an erroneous simulation occurring.
In that case, previous computations are erased by rolling back the computa-
tion to a known error-free state. The simulation then proceeds forward using

14 1 Time—The Zeroth Performance Metric

the error-free data until the next error is detected. Virtual time in the Time
Warp protocol is simply the counterpart of the physical time presented by the
environment. Distributed simulations lie outside the scope of this book.

1.4 Representations of Time

As we noted in Sects. 1.2.1 and 1.3.1, the use of time stamps is essential for
any kind of computer performance analysis. There are, it turns out, many
possible representations of time for that purpose.

On unix and Linux systems, there are different commands and C proce-
dures for invoking time stamps. The simplest and most obvious of these is the
date command which produces the recognizable calendar-based time stamp,
e.g., Thu Oct 23 08:02:07 2003 at the shell. Internally, however, this date
is stored as a 32-bit unsigned integer. In the case of the preceding timestamp,
that integer is 1066860127.

However, the integer representation of the time stamp varies across dif-
ferent computing platforms. For example, the current time of writing is rep-
resented by the number 3149683906 on a PowerPC MacOS computer. This
discrepancy is not an error, but it does raise questions about how this 32-bit
integer is generated and what it means. Several variants of the unix operating
systems already store certain time intervals as 64-bit integers, and this trend
will continue as 64-bit architectures become more ubiquitous. Currently, Perl5
does not handle 64-bit integers.

1.4.1 In the Beginning

In Sects. 1.2.1 and 1.3.1 we defined the term epoch. Different computing plat-
forms and different timing functions keep time encoded in terms of different
starting epochs. Table 1.2 summarizes some of those functions available in
the Perl 5 environment. These timing functions match many of those in the C
library. Coordinated Universal Time (UTC) is the recent standardized replace-
ment for Greenwich Mean Time (GMT). The reason the acronym UTC does
not match either the English phrase or the French phrase, Temps Universel
Coordonné, has to do with an attempt at international political correctness
whereby the average over both phrases was taken.

So, the 32-bit unsigned integer mentioned earlier encodes the number of
seconds since the starting epoch defined on that particular platform. For ex-
ample, MacOS1 encodes the number of seconds since January 1, 1904, while
unix encodes the number of seconds since January 1, 1970.
1 The MacOS r© epoch turned 100 years old on January 1, 2004.

1.4 Representations of Time 15

Table 1.2. Perl time functions

time() Returns the value of time in seconds since 00:00:00 UTC,
January 1, 1970.

times() Gives process times in terms of the CPU time (not cal-
endar time) broken out as user (or application) time and
system (or kernel) time.

strftime() Is a posix routine to format date and time.
gettimeofday() Returns the time expressed in seconds and microseconds

since midnight (00:00) UTC, January 1, 1970. The reso-
lution is never worse than 100 HZ, which is equal to 10
ms.

strftime() Is a posix routine to format date and time.
localtime() Representing the number of seconds since midnight Jan-

uary 1, 1900. The same as the ctime() or calendar time
function in the C library.

gettimeofday() Returns the time is expressed in seconds and microsec-
onds since midnight (00:00) UTC, January 1, 1970. The
resolution is never worse than 100 HZ, which is equal to
10 ms.

1.4.2 Making a Date With Perl

All time elements are numeric and stored in a data structure called tm

struct tm {

int tm_sec; /* seconds */

int tm_min; /* minutes */

int tm_hour; /* hours */

int tm_mday; /* day of the month */

int tm_mon; /* month */

int tm_year; /* year since 1900 */

int tm_wday; /* day of the week */

int tm_yday; /* day in the year */

int tm_isdst; /* daylight saving time */

};

and defined in the unix header file <time.h>. The field tm year is the number
of years since 1900. The calendar year 2003 is therefore represented as tm year
= 103. The corresponding Perl array is:

($sec,

$min,

$hour,

$mday,

$mon,

$year,

$wday,

$yday,

$isdst)

16 1 Time—The Zeroth Performance Metric

These values and the differences in the results returned by the functions in
Table 1.2 can be seen most easily by running the following Perl script on your
favorite platform:

#! /bin/perl

timely.pl

use Time::Local;

($sec,$min,$hrs,$mdy,$mon,$Dyr,$wdy,$ydy,$DST) = localtime(time);

print "\n====== Representations of Time ======\n";

print "The fields in struct tm: \n";

print "struct tm {\n";

print "\ttm_sec $sec\n";

print "\ttm_min $min\n";

print "\ttm_hrs $hrs\n";

print "\ttm_mdy $mdy\n";

print "\ttm_mon $mon\n";

print "\ttm_Dyr $Dyr (years since 1900)\n";

print "\ttm_wdy $wdy\n";

print "\ttm_ydy $ydy\n";

print "}\n";

print "\n";

print "Equivalent of UNIX ctime() formatting: \n";

$now = localtime;

print "$now\n";

print "\n";

print "Equivalent GMT time: \n";

$now = gmtime;

print "$now\n";

print "\n";

print "Integer representation from timelocal(): \n";

$uint = timelocal($sec,$min,$hrs,$mdy,$mon,$Dyr);

printf("%u or %e Seconds since 1/1/1900\n", $uint, $uint);

The output on a Linux system looks like this:

====== Representations of Time ======

The fields in struct tm:

struct tm {

tm_sec 32

tm_min 44

tm_hrs 10

tm_mdy 6

tm_mon 9

tm_Dyr 103 (years since 1900)

tm_wdy 1

tm_ydy 278

}

1.4 Representations of Time 17

Equivalent of UNIX ctime() formatting:

Mon Oct 6 10:44:32 2003

Equivalent GMT time:

Mon Oct 6 17:44:32 2003

Integer representation from timelocal():

3148281872 or 3.148282e+09 Seconds since 1/1/1900

The function timelocal() shows the integer corresponding to the time
stamp in localtime().

1.4.3 High-Resolution Timing

Clearly, functions like localtime() in Table 1.2 can only produce time stamps
with an accuracy that is no better than one second. You can, however, get
up to six decimal digits of precision (i.e., microseconds) with a Perlmodule
called HiRes. The following Perlscript presents a simple example of how more
accurate elapsed times can be measured using the HiRes module:

#! /usr/bin/perl

timrez.pl

use Time::HiRes;

$t_start = [Time::HiRes::gettimeofday];

Do some work ...

system("ls");

$t_end = [Time::HiRes::gettimeofday];

$elaps = Time::HiRes::tv_interval ($t_start, $t_end);

$msecs = int($elapsed*1000);

print "\nElapsed time is $elaps seconds\n";

Note that the amount of work (listing the files in a local directory) is
relatively small and therefore takes less than one second to complete. The
resulting output:

Elapsed time is 0.01276 seconds

demonstrates that it took about 12.8 ms in fact. Since the HiRes module is
not a Perlbuilt-in, you must download it from the Comprehensive Perl Archive
Network (CPAN) search.cpan.org/ and install it using the directions in
the Appendix F. In addition to high resolution timing, Perlalso offers the
Benchmark module to perform a more sophisticated analysis of timing results.

18 1 Time—The Zeroth Performance Metric

1.4.4 Benchmark Timers

The Benchmark module is a Perlbuilt-in, so its functions are accessible by
default for measuring elapsed times. The following simple example shows how
Benchmark objects are created and differenced to produce the elapsed time:

#! /usr/bin/perl

bench1.pl

use Time::Local;

use Benchmark;

$t_start = new Benchmark;

The routine that is measured

print "Benchmark started.\n";

open(OUT, ">dev/null");

for ($i = 0; $i < int(1e+7); $i++) {

print OUT ".";

}

$t_end = new Benchmark;

$td = timediff($t_end, $t_start);

print "\nWorkload time:",timestr($td),"\n";

The output looks like this:

Benchmark started.

Workload time:41 wallclock secs (40.16 usr + 0.40 sys = 40.56 CPU)

The Benchmarkmodule is also capable of performing much more sophisticated
kinds of timing analyses, such as the following pairwise comparisons:

#! /usr/bin/perl

bench2.pl

use Time::Local;

use Benchmark qw(cmpthese); # explicit import required

The routine that is measured

print "Benchmark started.\n";

cmpthese(-4, {

alpha_task => "++\$i",

beta_task => "\$i *= 2",

gamma_task => "\$i <<= 2",

delta_task => "\$i **= 2",

}

);

Benchmark the benchmark code ...

print "===============\n";

1.4 Representations of Time 19

print "CPU time for Benchmark module to execute:\n";

my ($user, $system, $cuser, $csystem) = times();

printf("%4.2f (usr) %4.2f (sys)\n", $user, $system);

printf("%4.2f (usr) %4.2f (sys)\n", $cuser, $csystem);

print "===============\n";

On a 500-MHz Pentium III processor, the output looks like this:

Benchmark started.

Benchmark: running alpha_task, beta_task, delta_task, gamma_task for

at least 4 CPU seconds...

alpha_task: 4 wallclock secs (4.01 usr + 0.00 sys = 4.01 CPU) @

3940537.31/s (n=15789733)

beta_task: 4 wallclock secs (4.29 usr + 0.00 sys = 4.29 CPU) @

1094158.32/s (n=4699410)

delta_task: 4 wallclock secs (4.06 usr + 0.00 sys = 4.06 CPU) @

861472.88/s (n=3494134)

gamma_task: 3 wallclock secs (4.11 usr + 0.00 sys = 4.11 CPU) @

2414453.00/s (n=9913744)

Rate delta_task beta_task gamma_task alpha_task

delta_task 861473/s -- -21% -64% -78%

beta_task 1094158/s 27% -- -55% -72%

gamma_task 2414453/s 180% 121% -- -39%

alpha_task 3940537/s 357% 260% 63% --

===============

CPU time for Benchmark module to execute:

111.17 (usr) 0.15 (sys)

0.00 (usr) 0.00 (sys)

===============

The table of timing results is sorted from slowest to fastest, and shows the
percentage speed difference between each pair of tests.

This is all very convenient, but beware the overhead! Notice that the each
task executed for 4 cpu-seconds but post-processing the results caused the
script to take more than 2 min of wall-clock time to complete.

It is also important to be aware that certain Benchmark functions must
be explicitly imported into your scripts in order to become activated. One of
these is the cmpthese() function. Notice also that the second argument in
cmpthese() is a Perlhash reference. See search.cpan.org/~jhi/perl-5.8.
1/lib/Benchmark.pm, which updates the description of the Benchmark mod-
ule in Wall et al. [2003].

1.4.5 Crossing Time Zones

Finally, it is worth noting that Perloffers a very convenient way of allowing
you to time stamp remote unix servers from a single location. There are two
essential steps:

1. Select the time zone using the parameter file in /usr/share/zoneinfo/.

20 1 Time—The Zeroth Performance Metric

2. Set the time zone using the posix tzset() function.

As a very simple example of how this capability works, imagine there are three
servers: one in Melbourne, Australia; another in Paris, France and the other in
San Francisco, California. If you are in Melbourne and you want to compare a
server located there with the one located in San Francisco, the following Perl
script will give the correct timestamp for each server:

#! /usr/bin/perl

timetz.pl

use Time::Local;

use POSIX qw(tzset);

my @dayofweek = (qw(Sunday Monday Tuesday Wednesday Thursday Friday

Saturday));

my @monthnames = (qw(Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec));

my ($sec, $min, $hour, $mday, $mon, $year, $wday, $yday);

%zone = (Melbourne => 0, Paris => 1, SanFrancisco => 2);

$zonelocal = $zone{Melbourne};

$zoneremote = $zone{SanFrancisco};

Get the local time first ...

$now = localtime();

Set the remote time zone ...

if ($zoneremote == $zone{Melbourne}) {

$ENV{TZ} = ’:/usr/share/zoneinfo/Australia/Melbourne’;

$rplace = "Melbourne";

}

if ($zoneremote == $zone{Paris}) {

$ENV{TZ} = ’:/usr/share/zoneinfo/Europe/Paris’;

$rplace = "Paris";

}

if ($zoneremote == $zone{SanFrancisco}) {

$ENV{TZ} = ’:/usr/share/zoneinfo/US/Pacific’;

$rplace = "San Francisco";

}

tzset();

Get the remote time

($sec, $min, $hour, $mday, $mon, $year, $wday, $yday) = localtime();

$year += 1900;

if ($zonelocal == $zone{Melbourne}) {

$lplace = "Melbourne";

}

if ($zonelocal == $zone{Paris}) {

1.5 Time Distributions 21

$lplace = "Paris";

}

if ($zonelocal == $zone{SanFrancisco}) {

$lplace = "San Francisco";

}

print "Local position: $lplace\n";

print "Local time is $now\n";

print "Remote position: $rplace\n";

print "Remote time is $hour:$min:$sec\n";

print "Remote date is $dayofweek[$wday], $monthnames[$mon] $mday,

$year\n";

The output is:

Local server in Melbourne

Local time is Fri Oct 24 08:06:32 2003

Remote server in San Francisco

Remote time is 15:6:32

Remote date is Thursday, Oct 23, 2003

In other words, you do not have to run separate Perlscripts on each server
to get the correct local and remote time stamps. Using tzset() could be a
useful device for triggering data collection from several remote servers located
in different geographical regions. Of course, it will not account for any drift
or skew between the clocks (Sect. 1.3.1) on different servers.

The context for the discussion in this section has been data collection and
performance monitoring. In Chap. 6 we look at how some of these same func-
tions can be applied in the context of performance modeling with PerlPDQ.

1.5 Time Distributions

In this section we review two probability distributions commonly used in
the performance characterization of computer systems: the exponential and
gamma distributions. Rather than getting bogged down in too many mathe-
matical details, it is suggested that readers familiarize themselves with these
statistical functions available in both commercial software such as Microsoft
Excel, Mathematica, and the statistical package called S+ (www.insightful.
com), and public domain packages such R (www.r-project.org) and the
CPAN statistics archive search.cpan.org.

Most of the queueing models discussed throughout this book, assume that
characteristics such as the times between arrivals (interarrival times) and the
periods of time to service a request (service times), are distributed according
to an exponential distribution. An exponential distribution is the signature of
random processes in action.

22 1 Time—The Zeroth Performance Metric

However, the assumption that the distribution of interarrival and service
times is exponential, is often applied more for mathematical simplicity rather
empirical accuracy. As we shall see in Chaps. 2 and 3, the exponential distri-
bution also has special mathematical properties that facilitate the prediction
of computer system performance when represented as a system of queues (see
Appendix C). Although the exponential distribution is an approximation, it
is often a good one because, although most computer system processes are
not random, they often act as though they are.

The end-to-end response times or round-trip response time (RTT) is the
time is takes a request to traverse all of the necessary service components in a
computer system; including servers and network segments. Since the end-to-
end response time is the accumulation of these component times, it typically
belongs to a distribution that is more general than the simple exponential
distribution (see Fig. 5.9 in Chap. 5). The gamma distribution is one example
of a more general distribution that can be used to fit end-to-end response time
measurements.

1.5.1 Gamma Distribution

The gamma distribution is a continuous statistical function [Orwant et al.
1999]. The Perl module GammaDistribution.pm is available from CPAN. It is
also available in other tools such as Excel. The gamma density function f(t)
is defined as:

f(t, α, β) =
tα−1

βα Γ (α)
e−t/β , (1.1)

where the gamma function:

Γ (α) =
∫ ∞

0

tα−1 e−t dt (1.2)

is a generalization of the factorial function a! = a × (a − 1) × . . .× 2 × 1 by
virtue of Γ (a + 1) = a!.

The gamma distribution function F (t) is the integral of (1.1). The two
parameters α and β determine the shape and scale of the distribution, respec-
tively. The mean and variance of the gamma distribution are respectively αβ
and αβ2. Certain values of the parameters α and β relate the gamma dis-
tribution to other well-known distributions in probability theory and statis-
tics [Allen 1990, Trivedi 2000].

1.5.2 Exponential Distribution

Under certain conditions, the general gamma distribution reduces to the spe-
cial case of an exponential distribution. In particular, if α = 1, the gamma
distribution (1.1) becomes equivalent to the exponential distribution:

1.5 Time Distributions 23

f(t, λ) = λ e−λt , (1.3)

with mean = 1/λ and variance = 1/λ2. The corresponding exponential dis-
tribution function is given by:

F (t, λ) = 1 − e−λt , (1.4)

where the gamma distribution parameter β has been replaced by λ = 1/β.
The exponential density function f(t) and its distribution function F (t) are
plotted together in Fig. 1.3 for the parameter value λ = β = 1.

As noted in Sect. 1.5, the exponential distribution is often used in computer
performance analysis to characterize interarrival times and service times.

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Response time

P
er

ce
nt

ile

CDF

pdf

Fig. 1.3. Exponential density (curve) and distribution (bars) functions

By tabulating values of the exponential distribution in Table 1.3, we note that
since the mean time (e.g., the mean service time S) has the value S = 1 in
Fig. 1.3, the 80th percentile (0.7981) is about 1.6 times the magnitude of S,
the 90th percentile (0.8997) is about 2.3S, and the 95th percentile (0.9502)
is 3S. Assuming the measured distribution of times actually conforms to the
exponential distribution, we can state the following rule of thumb.

24 1 Time—The Zeroth Performance Metric

Table 1.3. Exponential service time distribution

Service Density Distribution
time (s) function function

1.5 0.2231 0.7769
1.6 0.2019 0.7981
1.7 0.1827 0.8173
...
2.1 0.1225 0.8775
2.2 0.1108 0.8892
2.3 0.1003 0.8997
2.4 0.0907 0.9093
...
2.9 0.0550 0.9450
3.0 0.0498 0.9502

If the mean service time is S, then:

1. 80th percentile occurs at S80 ≈ 5S/3
2. 90th percentile occurs at S90 ≈ 7S/3
3. 95th percentile occurs at S95 ≈ 9S/3

Since the distribution of arrival rates and service times is assumed to be expo-
nentially distributed in PDQ (Chap. 6), this rule of thumb can also be applied to
those attributes in PDQ models.

In Sect. 1.5 it was pointed out that measurements of end-to-end response
times on real computer systems require a more general distribution than the
exponential distribution. Based on Sect. 1.5.1, an obvious candidate is the
gamma probability distribution. In the remainder of this section, we show to
apply the gamma distribution to performance measurements from a network-
based computer system. We shall investigate client/server systems in more
detail in Chap. 9.

1.5.3 Poisson Distribution

The Poisson distribution is used to represent discrete events occuring ran-
domly in continuous time t. Example events are radioactive decay and the
number of incoming telephone calls during some period t = T .

Consider the period T to be broken into a large number of intervals N .
If events occur at a constant rate λ, the probability that there are exactly n
events in a period T is given by the product of the probability that there is
one even in each of n intervals of width T/N , times the probability that there
are no events in the remaining N − n intervals:

1.5 Time Distributions 25

Pr(n events) = lim
N→∞

(
λT

N

)n

× N !
n!(N − n)!

(
1 − λT

N

)N−n

(1.5)

The combinatorial factor accounts for the possible arrangements of intervals
with events among intervals with none. More formally, the probability density
function (PDF) is:

f(n, t) = e−λt (λt)n

n!
, n = 1, 2, . . . (1.6)

Strictly speaking, (1.6) is called the discrete probability mass function (PMF)
when the random variable is discrete. It follows from (1.6) that the probability
that there are no events at all during the period T is:

f(0, t) = e−λt . (1.7)

In other words, the distribution of time intervals is exponential. This is the
basis for the important connection between the Poisson and the exponential
distributions.

If the number of events are Poisson distributed then the time intervals between the
events are exponentially distributed. Hence, if arrivals into a queue are generated
by a Poisson process, the interarrival times will be exponentially distributed. We
make particular use of this result in Chap. 2.

The cumulative distribution function (CDF) is:

F (n, t) =
n∑

k=0

f(k, t) . (1.8)

In the limit that the sum becomes infinite, the discrete terms approach the
continuous function eλt and (1.8) becomes:

∞∑
k=0

f(k, t) = e−λteλt = 1 . (1.9)

The mean and variance of a Poisson distribution are identical:

E(n) = λt , V ar(n) = λt . (1.10)

1.5.4 Server Response Time Distribution

Consider an application running on a server that is connected by a local
network to its clients. Performance data is collected from both the server-side
and the network. Table 1.4 summarizes the performance statistics based on

26 1 Time—The Zeroth Performance Metric

Table 1.4. Summary of server-side statistics

Statistic Value

Sample mean (s) 0.82
Sample standard deviation (s) 1.95
Gamma mean μ 0.82
Gamma variance σ2 3.81
Calculated α parameter 0.18
Calculated β parameter 4.62

measurements from the server-side and fitting the scale and shape parameters
of the gamma distribution to those data.
From these measured data, combined with the sample mean and variance
for those data, the gamma function parameters can be calculated from the
following equations:

α =
μ2

σ2
, β =

μ

α
. (1.11)

The fitted response time functions for the side-server statistics are shown in
Fig. 1.4(a). The response time density function exhibits a very sharp peak
near the origin together with a long tail extending to the right along the time
axis. The predicted 80th, 90th, and 95th percentile response times are shown
in Table 1.5. From the third column we see that 80% of the requests take 1.0 s
or less, 90% take less than 2.5 s, and 95% take less than 4.3 s.

Table 1.5. Predicted server-side percentiles

Response Density Distribution
Time (s) Function Function

1.0 0.1182 0.7981
2.5 0.0403 0.9007
4.3 0.0175 0.9488

1.5.5 Network Response Time Distribution

A similar set of data from measurements of network response times is sum-
marized in Table 1.6. The fitted response time distributions are shown in
Fig. 1.4(b).

The corresponding 80th, 90th, and 95th percentile response times for the
network measurements are shown in Table 1.7. We see from Fig. 1.4 that the
average response time of the network is approximately twice as long as it is
for the server. On the other hand, the spread, as measured by the variance,

1.5 Time Distributions 27

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

1.80

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Response time

P
er

ce
nt

ile
CDF

pdf

(a) Server response functions based on the gamma probability distribu-
tion statistics in Table 1.4

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1.10

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Response time

P
er

ce
nt

ile

CDF
pdf

(b) Network response functions based on the gamma probability distri-
bution statistics in Table 1.6

Fig. 1.4. Fitted response time distributions for (a) the server and (b) the local
network measurements. The predicted response time percentiles are summarized in
Tables 1.5 and 1.7, respectively

28 1 Time—The Zeroth Performance Metric

Table 1.6. Summary of network statistics

Statistic Value

Sample mean (s) 1.74
Sample standard deviation (s) 0.89
Gamma mean μ 1.74
Gamma variance σ2 0.80
Estimated α parameter 3.76
Estimated β parameter 0.46

Table 1.7. Predicted network percentiles

Response Density Distribution
time (s) function function

2.4 0.2538 0.7959
3.0 0.1285 0.9076
3.4 0.0764 0.9479

is approximately four times greater for the server because of its longer tail
(Fig. 1.4(a)) of the fitted gamma distribution.

When server and network response time data are availabe as separate mea-
surements (like Sects. 1.5.4 and 1.5.5) but one wants to predict the combined
response time for both systems operating together then, technically speaking,
the two gamma distributions have to be convolved [Allen 1990, Verma 1992]
to get the correct estimate. However, in practice, a gamma distribution often
provides a sufficiently good fit for measurements of the combined system (see
Fig. 5.9 in Chap. 5). Brownlee and Ziedins [2002] discuss the successful ap-
plication of the gamma function to response time measurements of Internet
domain name servers (DNS).

1.6 Timing Chains and Bottlenecks

Distributed computer systems (such as the client/server architectures dis-
cussed in Chap. 9) comprise logical processes mapped onto a number of phys-
ical computing resources. A request, such as a database transaction, typically
requires the use of a sequence of these logical processes. The logical processing
is accommodated by a succession of software components. The time taken at
each stage to process the transaction adds up to the response time observed
by the user who initiated the transaction. Users are often concerned with so-
called end-to-end response time. The process with the longest processing time
is the time-sink and therefore the key determinant of the response time. It is
therefore given a special name—bottleneck.

The view of the user is not so different from that of the computer per-
formance analyst in that both of them desire to associate the length of the

1.6 Timing Chains and Bottlenecks 29

response time with time-sinks. Both the user and the analyst would like to
know how much time is spent in each stage of processing the database trans-
action during its “flight” through the system software. On average, the sum of
the times spent in each processing stage should equal the measured end-to-end
response time within some allowed tolerance.

Client Network Server

Fig. 1.5. Response time represented as links in a timing chain

Another way to think about the role of time-sinks or bottlenecks is to
view each processing stage as a link in a chain of processing events. Each
link corresponds to a processing stage. Borrowing a term well-known to auto
mechanics, we call the chain in Fig. 1.5 a timing chain. The number of links
in the chain corresponds to the number of instrumented processing stages,
i.e., processing stages that can be measured with probes. This is usually best
achieved by including the probes within the application code. In order for the
end-to-end response time to be the sum of the time spent in each stage, the
measurements must be sequential and the probe points must be contiguous.
There cannot be any missing links! (See Exercise 1.2.)

Figure 1.5 shows one possible timing chain arrangement. There are only
three links in the chain because only gross system instrumentation is available.
In other words, there are only contiguous probes in the client application, the
start and end of network services, and the database server.

Client NIC LAN Router WAN Server Disk

Fig. 1.6. Further decomposition of the timing chain in Fig. 1.5

Suppose the bottleneck is now found to be present somewhere in the net-
work. It would useful if the network services link in the timing chain of Fig. 1.5
could be further decomposed with finer resolution to determine more precisely
which network service was responsible for the bottleneck. Such a decomposed
timing chain is shown in Fig. 1.6. In this case, there are probes corresponding
to seven links instead of just three. Once again, there cannot be any missing
links. The network services link in Fig. 1.5 has been expanded to become four
links:

1. NIC card

30 1 Time—The Zeroth Performance Metric

2. LAN networking
3. Router
4. WAN networking

while the server link in Fig. 1.5 has been expanded to become two links:

1. Server platform (CPU, O/S, etc.)
2. Server disks

Finer resolution of process times requires additional instrumentation probes;
this is not always available, but it is always a worthy goal.

1.6.1 Bottlenecks and Queues

We shall further formalize this timing chain concept in terms of the queue
residence times in Chap. 2. Each link in the timing chain can be replaced
by a queueing center. The flight of each transaction comprises units of work
consuming resources at a series of queueing centers that represent the various
processing stages: applications processing, communications, database process-
ing, and so on.

Since there can be many transactions being processed simultaneously at
each stage, there is the possibility of contention among the transactions at
each queueing center. The processing time at each stage is then given by the
sum of the time the transaction has to wait to obtain the necessary processing
resources plus the time it actually takes to get processed when it finally can
access the resource. Clearly, the more heavily loaded the system, the longer
the queues will tend to be, and therefore the longer the time spent waiting
at each stage. The end-to-end response time then is the sum of each of these
processing times; it is formally known as the residence time.

1.6.2 Distributed Instrumentation

A significant problem remains, however, for distributed server performance
monitoring. Performance data sampled across many distributed servers is not
only incomplete in the sense of Sect. 1.3.6, but it has no universal format and
no universal storage format. At best, any such comprehensive solutions are
proprietary to a specific platform or a specific tool vendor. Some of these issues
have already been addressed and standardized solutions do exist. Among them
are:

• Application Quality Resource Management (AQRM): Download the spec-
ifications from www.opengroup.org/aquarium.

• Application Management Information Base (APPLMIB): An application
management schema that can be read by SNMP agents. See www.ietf.
org/html.charters/OLD/applmib-charter.html. This is a descendent
of network management protocols reaching up into the application man-
agement level.

1.6 Timing Chains and Bottlenecks 31

• Application Response Measurement (ARM): Download the specifications-
from www.opengroup.org/management/arm.htm.

• Simple network management protocol (SNMP): See www.ietf.org/html.
charters/snmpv3-charter.html

• Universal measurement architecture (UMA): Download this specification
from www.opengroup.org/products/publications/catalog/c427.htm.

For a more detailed comparison of the performance management capabilities
these standards see Gunther [2000a, Chap. 4] and Appendix D.

1.6.3 Disk Timing Chains

A file I/O operation under the unix operating system can be represented
as a timing chain [Vahalia 1996] with queues. It is important to understand
the limitations of what the unix kernel can actually measure and what gets
reported (sometimes erroneously) in certain unix I/O performance tools such
as iostat. The I/O operation begins with the user program issuing a request

I/O bus
Host

Adaptor

Disk

Unix
buffer
cache

Device
driver

User
I/O request

Wait
time

Service
time

Apparent service time
(Response time)

Disk
controller

Fig. 1.7. Timing path of a file I/O command

to read or write data. Since this I/O involves the file system, it first gets
queued in the unix buffer cache. The request is then sent to the unix device
driver (Fig. 1.7), where it is further queued until the driver can obtain an
uncontended path to the disk controllers. After the I/O operation has been
serviced at the disk (the data is read or written), it returns an interrupt to
the device driver, thus starting the service of the next I/O operation.

The unix device driver only keeps counts of I/O completions. The wait
count in unix tools like iostat is the number of I/O requests in the driver
queue [Cockcroft and Pettit 1998]. Once the I/O has been issued (i.e., once
it has left the driver queue) it is considered to be in service. But this is not
the service time at the disk. To reach the platter, it must traverse the I/O
bus down to the target disk. Consequently, the so-called service time can be
highly variable. This is really a reflection of the fact that it is a response time,
and not a service time. Since the time to traverse each of these subsystems

32 1 Time—The Zeroth Performance Metric

(or timing chain links) lies outside the unix kernel, it cannot account for each
of them separately. Hence, the total time is a response time and not a service
time.

1.6.4 Life and Times of an NFS Operation

As an example of a timing chain that has been resolved at the microsecond
level, using sophisticated measurement probes [Nelson and Cheng 1991], we
follow the chain of processing events in the network file system (NFS) read
operation like that shown in Fig. 1.8 Although this data is more than a decade
old, the magnitudes have not changed too significantly. Total end-to-end re-

user
process

client
process

TCP/IP
driver

server
processes

NFS client

request

response

NFS Server

TCP/IP
driver

TCP/IP
packet network

Fig. 1.8. Processing an NFS operation

sponse time was measured at 47.2 ms. These measurements exclude client
processing and Ethernet contention. The detailed timing breakdown of the
timing chain consists of the following processing steps:

• Ethernet transmission time 0.16 ms from:
– Inbound to the server from the client-side
– Best case assumes no ethernet contention
– Single UDP datagram containing the NFS ReadOp RPC call
– 100 B includes: RPC, UDP, and IP headers, file handle and offset,

userid (see Glossary in Appendix A)
– Assumes no network contention

• Packet processing time 3.5 ms each way, comprising:
– Disassembly of the NFS ReadOp request
– IP, UDP, RPC and NFS
– DMA transfer time

• File processing time 1.5 ms each way, comprising:
– All file system processing

1.7 Failing Big Time 33

– Messages between Ethernet controller, file, and disk
– Two request–reply pairs (four total) for NFS disk read

• I/O driver time 0.370 ms each way:
– Kernel, elevator queueing, disk device bus commands

• Random disk access of 8 KB; 29.5 ms, comprising:
– Disk device select and transfer
– Disk command decode and processing
– Average seek time (17.5 ms)
– Average rotational latency (7.5 ms)
– 8 KB data transfer (16 sectors on the same track)
– Device cleanup and handshake (0.260 ms)

• Server-side Ethernet Transmission time of 6.8 ms, comprising:
– 6 IP packets
– RPC reply is one datagram but many IP packets
– 8 KB data + IP, UDP, RPC header (500 B)
– 5 full packets (1,512 B) + 6 partial packets

It should be clear that disk accesses constitute the primary bottleneck, fol-
lowed by remote procedure call (RPC) processing and the transmission of
data back to the requesting client. The disk is the primary bottleneck, taking
approximately 30 ms to retrieve 8 KB of data. Since the RPC mechanism
involves memory-to-memory copying, it is a major contributor to the 7 ms at
the secondary bottleneck.

The cautious reader should note that Redundant Arrays of Inexpensive
Disks (RAID), and Storage Area Networks (SAN) usually do not offer the
possibility of resolving timing chains in this way. For the most part, they
remain proprietary black boxes.

1.7 Failing Big Time

Achievable performance can be constrained significantly by poor reliability
or lack of stability in a computer system. The importance of this, often ig-
nored, aspect of performance analysis is captured in the time-honored adage,
“High performance, high reliability, low cost; pick two!” On the other hand,
those who do recognize its importance have created a hybrid metric called
performability to reflect the intimate relationship between performance and
reliability.

History is littered with examples demonstrating the sometimes tragic con-
sequences of ignoring reliability issues; some can be found on the Internet
newsgroup comp.risks or the Web digest at http://catless.ncl.ac.uk/
Risks. One of the most public and tragic examples of miscalculating reliabil-
ity was the loss of NASA space shuttle Challenger (STS-51-L) and its crew on
January 28, 1986 [Gunther 2000a]. Sadly, history repeated itself on February
1, 2003 with loss of the Columbia space shuttle (STS-107) and its crew, appar-
ently because of the same kind of poor risk-management practices [Gunther

34 1 Time—The Zeroth Performance Metric

2002b] that were identified 17 years earlier during the Challenger investigation
(see, e.g., www.ralentz.com/old/space/feynman-report.html).

1.7.1 Hardware Availability

The concept of availability is closely related to reliability, but, since it is a little
easier to grasp, we discuss it first. The availability metric is now in widespread
use as a way to assess the reliability of commercial computers. The average
availability of a computer system can be calculated from the measured uptime
command as reported by unix administration tools. (See Chap. 4. A queueing
model that incorporates the notions of availability, breakdown and, repair is
discussed in Chaps. 3 and 6.)

The availability A can be defined simply in terms of the time the system
is up during some observation period T . We denote the total time the system
is up as Tup and the total time it is down for repair as Tdown. Then

A =
Tup

T
=

Tup

Tup + Tdown
. (1.12)

From this definition, it is clear that the availability metric lies in the range
0 ≤ A ≤ 1.

Example 1.4. Suppose a computer system has a measured up time of 41.25
days and was down for 10 h. What is the average availability? Since 41.25
days is 990 h, we can use 1.12 to write:

A =
990

990 + 10
= 0.99 . (1.13)

In other words, the system is available 99.0% of the time ��
This availability appears satisfactory, but, as we shall see shortly, there are
two shortcomings in using an availability metric alone. The first shortcoming
has to do with 99.0% availability not being a sufficient measure for most
production operations. The second shortcoming arises from the multiplicity
of up and down times that satisfy the same availability criterion.

1.7.2 Tyranny of the Nines

To satisfy real-world computer availability requirements with regard to the
first shortcoming, we need to introduce more digits after the decimal point
in the availability metric A. A commonly stated requirement for commercial
computing systems is 99.99% availability over the course of a 7 (day) by 24
(hour) operating year. How much downtime does that correspond to?

Example 1.5. A useful yardstick from Table 1.1 is 1 yr = 32 × 106 s.
(a) 99.9% availablemeans 32×106×10−3 = 32, 000 s or 9 h per year downtime.
(b) 99.99% available means 32 × 106 × 10−4 = 3, 200 s or approximately 1 h
of downtime per year.
(c) 99.9999% means 32× 106 × 10−6 s or 32 s of downtime per year. ��

1.7 Failing Big Time 35

An availability of 99.X% ≡ 10−(2+X) occurrences. Noting that 2 +X is also the
number of nines in the availability number, we arrive at the mnemonic:

99.99 . . .9% = 10−(number of 9’s) occurrences per year.

Achieving and maintaining these levels of availability in a cost-effective man-
ner leads some computer manufacturers to refer to this constraint as The
tyranny of the nines.

1.7.3 Hardware Reliability

The second shortcoming stems from the multiplicity of Tup and Tdown times
that satisfy the same availability criterion expressed as the ratio in (1.12).

Example 1.6. Each pair of up and down times in Table 1.8 correspond to 99%
availability. The last entry might strike the astute reader as unrealistic, but,

Table 1.8. Identical availability ratios

Tup Tdown Unit

990 10 h
99 1 h
99 1 s

as we shall see in Sect. 1.8.1, such timescales can arise in the context of the
reliability of very large scale integration (VLSI) computer chips. ��

0.2 0.4 0.6 0.8 1 1.2
Time

5

10

15

20

Failure
Rate

Fig. 1.9. Classic bathtub shape of the failure rate h(t)

36 1 Time—The Zeroth Performance Metric

The instantaneous failure rate h(t) (also known as the hazard rate [Trivedi
2000]) is generally determined by direct measurement. A typical failure curve
is shown in Fig. 1.9. Initially, failures arise from inherent defects in the system,
e.g., by virtue of poor design, or the manufacturing process itself. Corrections
to these processes eventually reduce the failure rate. After this wear-in pe-
riod, the failure rate becomes relatively constant during the working life of the
system. Ultimately, however, the failure rate begins to increase as hardware
components reach their end of life and wear out. These three phases produce
the classic bathtub shape of the failure function. Notice that h(t) is not nec-
essarily symmetric about the working life period. By defining the cumulative
failure rate,

H(t) =
∫ t

0

h(s) ds, (1.14)

the reliability R(t) can be written as

R(t) = e−H(t) . (1.15)

The reliability corresponding to Fig. 1.9 is shown in Fig. 1.10. The reliability is

0.2 0.4 0.6 0.8 1 1.2

Time

0.2

0.4

0.6

0.8

1

Reliability

Fig. 1.10. Reliability function R(t) corresponding to Fig. 1.9

the probability that the system has remained up until time t given that it was
already up at time t = 0. The ambiguity that can arise in the availability ratio
(1.12) can be removed by using a different measure, the mean time between
failures or MTBF.

1.7.4 Mean Time Between Failures

Conveniently, the MTBF can be defined in terms of reliability R(t):

1.7 Failing Big Time 37

MTBF =
∫ ∞

0

R(t) dt . (1.16)

Various reliability models can be constructed for (1.16) by an appropriate
choice of h(t). Some of the best known reliability models are based on the
exponential, and the Weibull distributions, which we briefly summarize here.

Exponential distribution. This is a one-parameter reliability model where the
instantaneous failure rate,

h(t) = λ , (1.17)

is constant. Then, H(t) = λ t, and (1.15) becomes the exponential relia-
bility function:

R(t) = e−λ t . (1.18)

Substituting this into (1.16) produces:

MTBF =
1
λ

. (1.19)

In other words, the MTBF is just the inverse of the failure rate. The main
feature of exponential models is that they represent system failures that
are statistically independent or random in time, which is also known as
the “ageless” property.

Weibull distribution. This is an alternative model specified by two parame-
ters. The instantaneous failure rate is:

h(t) = λαtα−1 . (1.20)

Parameter values of α �= 1 represent various degrees of aging or fatiguing.
When α = 1, the Weibull distribution reduces to the exponential failure
function given by (1.17). The additive Weibull model,

h(t) = λαtα−1 + γ βtβ−1 , (1.21)

with parameter set α = 5, β = 1/2, γ = 2, and λ = 2 was used to produce
Figs. 1.9 and 1.10.

Now, we are in a position to express the previously defined availability A in
terms of the mean time between failures (MTBF) and mean time to repair
(MTTR) of a failed hardware system. The MTTR includes response time,
time to isolate the fault, time to apply the fix, and time to verify that the fix
works. Then:

A =
MTBF

MTBF + MTTR
. (1.22)

In Chap. 2, these notions of breakdown and repair times are revisited within
the context of a queueing system known as the repairman model.

38 1 Time—The Zeroth Performance Metric

1.7.5 Distributed Hardware

So far, we have only considered the availability of a single component. The
component might represent a complete computer or just a computer subsys-
tem. In a distributed computer system there are dependencies and redundan-
cies that impact the availability of the aggregate system. In the simplest cases
the components are configured in a chain or in series. Alternatively, redundant
components can be configured in a parallel arrangement. The assessment of
series and parallel availability differs significantly.

1.7.6 Components in Series

If there are k components in series that are statistically independent of each
other, then the joint availability can be calculated from

Aseries = A1 × A2 × . . .× Ak, (1.23)

where each Ak is calculated from (1.22), depending on the available data.

Example 1.7. Consider a database transaction system involving a client work-
station, a fileserver, a gateway, and the database server itself. Assume the
database server and the fileserver are both 99.99% available while the work-
station and the gateway respectively are only 99.1% and 99.7% available. The
joint availability is given by:

Aseries = (0.9999)2 × (0.9910)× (0.9970) = 98.78%.

The important point is that the joint availability can never be greater than
the availability of the weakest link in the chain of components. ��

1.7.7 Components in Parallel

The availability of a system comprising k redundant components is expressed
most simply in terms of the complement Uk = (1−Ak) of the availability for
each component. The availability of components connected in parallel that
are otherwise independent of each other can be written as:

Apara = 1 − (U1 × U2 × . . .× Uk) . (1.24)

Uk is called the unavailability.

Example 1.8. Consider a two-node database server each of which only has
99.1% availability. The joint availability, however, is given by:

Apara = 1 − (1 − 0.991)2

or 99.99%. ��
In reality, computer system configurations are composed of complex networks
that involve combinations of series and parallel networks. In that case assessing
availability (if it can be calculated at all) requires more complicated techniques
[Xie 1991] than those briefly presented here.

1.8 Metastable Lifetimes 39

1.7.8 Software Reliability

Because software and hardware have very different failure modes, modeling
the reliability of software tends to be more difficult than it is for hardware.
Faults in software do not arise from “fatigue” in software processes but rather
from the execution path containing a defect or “bug.” This is quantified in a
measure called the mean time between defects (MTBD).

2000 4000 6000 8000 10,000
Time

100

125

150

175

200

225

Software
Failure
Rate

Fig. 1.11. Software failure model

There is always a finite set of unresolved bugs present in software. But that
finite number need not be a decreasing quantity. Bugs can be removed and in
the removal process new bugs or side-effects can be introduced unintentionally.
They will cause failures that can only be detected in the future. Consequently,
the failure rate will tend to fall very slowly over time (Fig. 1.11).

In a widely used model, the number of bugs B(t) reported at time t is
given by:

B(t) = β0 (1 − e−λt/β0) , (1.25)

where β0 is the initial number of defects (Fig. 1.12). The corresponding
MTBD,

MTBD =
1
λ

eλt/β0 , (1.26)

also increases with time, in contrast to the constant time of the exponential
model in (1.19).

1.8 Metastable Lifetimes

Related to predictions about reliability and mean time to failure is the con-
cept of metastability and metastable lifetimes. In physics and chemistry, a

40 1 Time—The Zeroth Performance Metric

2500 5000 7500 10,000 12,500 15,000
Time

50

100

150

200

Total
Software
Defects

Fig. 1.12. Cumulative reported software bugs

metastable state is an excited energy state with a temporary lifetime that is
shorter than the lowest energy, stable state (or ground state). There are two
identifiable forms of metastable behavior in computer systems:

1. Microscopic metastability. This form of metastable behavior occurs in
VLSI chips (e.g., synchronizers and arbiters). It can lead to total failure
at the system level.

2. Macroscopic metastability. This form of metastable behavior occurs in
computer systems and computer networks.

We briefly review both forms of metastability. A more detailed discussion of
metastability and its deeper consequences for computer performance can be
found in Gunther [2000a, Part III].

1.8.1 Microscopic Metastability

All computer systems hardware requires clocking synchronization of some kind
to handle interrupts, to perform bus arbitration, to initiate memory refreshes
and so on. In general, any computer system that comprises several subsys-
tems each running with different clock generators, requires synchronizers to
enable communication between the various subsystems. These synchronizers
are usually built upon more elementary devices called flip-flops. The output
of the digital synchronizer, shown in Fig. 1.13, simply toggles between a 1 or 0
depending on whether a 1 or 0 appears on the asynchronous input relative to
the other input signal, usually a periodic system clock. The synchronized state
occurs when the input signal edges rise or fall simultaneously. In more detail,
this requires that the edges of the input signals arrive during the required
setup and hold windows specified by the tolerances of the synchronizer. From

1.8 Metastable Lifetimes 41

In Out

Clock

Asynchronous
input

System clock

Synchronous
system

Fig. 1.13. A simple synchronizer circuit

a digital point of view, if the signals fail to meet the transition window in a
given clock cycle, they should meet it in the next cycle. There is, however, a
third possibility.

When the setup and hold criteria are not met, the synchronizer can go into
a third state: a metastable state with the output pin midway between a 1 and
0 (in terms of voltage level). To make matters worse, the length of time the
synchronizer might stay in this undecided state before resolving to a legitimate
1 or 0 has no limit or bound. All that can be said is the likelihood of a
synchronizer output pin staying in a metastable state diminishes exponentially
with time according to (1.3). Only after an infinite time would the probability
be zero.

In addition, the metastable output can ramify to the inputs of other de-
vices. The gross physical consequences of such microscopic metastability in-
clude intermittent memory corruption and other inexplicable system crashes.
The intermittency of these effects makes diagnosis extremely difficult. This
problem was considered significant enough within the electronics industry that
it made the cover of the July 1988 issue of Electronic Design. At that time,
some people thought there was a way around this problem. It has finally been
accepted by engineers that microscopic metastability must be accommodated
in a circuit design, since it cannot be totally eliminated.

Accommodating metastability usually takes the form of imposing a suf-
ficient delay to allow any metastable condition to decay into a known state
before being propagated. A required delay can be determined if the MTBF
can be calculated. We can use the reliability equations derived earlier to cal-
culate that MTBF. Experimental measurements have revealed that the setup
window w for the input signal is a function of three parameters: T0 and τ ,
which are specific to the type of synchronizer technology being used, and the
resolution time tr = tc − ts which is a function of the clock period tc and the
setup time ts [Kleeman and Cantoni 1987]. The width of the window is given
by:

w = T0 e− tr/τ . (1.27)

If the asynchronous input signal occurs within w, the output of the syn-
chronizer remains metastable for a period greater than the resolution time tr.
Equation (1.27) is essentially a restatement that the smaller the timing win-
dow, the longer the output will take to resolve (as expressed by tr). A small

42 1 Time—The Zeroth Performance Metric

setup window occurs when the clock edge and asynchronous input occur very
close together in time. Conversely, (1.27) also tells us that the resolution time
gets exponentially smaller for a wider setup window.

Letting α be the average number of asynchronous input events, the prob-
ability that the synchronizer settles within the resolution period tr (i.e., does
not fail) is given by exp(−αw). If we further assume that the asynchronous
events are statistically independent, we can write the reliability R for k input
events as:

R(t) = [exp(−αw)]k ≡ exp(−αwk) . (1.28)

Equation (1.16) previously defined the relationship between the mean failure
rate and the reliability. Since (1.28) is independent of time, (1.16) takes the
simpler form R = exp(−λ). Transposing this expression, we can write the
mean failure rate as λ = − lnR. Note that λ is also a constant in this case. But
the number of input events k is dependent on the clock frequency fc = 1/tc
and substituting this frequency for k in (1.28) gives the mean failure rate:

λ = − lnR ≡ αwfc . (1.29)

Taking (1.29) together with the definition for w in (1.27) provides the complete
expression for the failure rate:

λ = αfcT0 e− tr/τ . (1.30)

The mean failure rate gets exponentially smaller with increasing resolution
time. Because we have already assumed an exponential distribution for the
inter-arrival time of asynchronous events, the MTBF, according to (1.19), is
given by the inverse of the failure rate in equation (1.30). That is:

MTBF ≡ 1
λ

=
e− tr/τ

αfcT0
. (1.31)

Example 1.9. Some typical synchronizer parameter values are T0 = 0.40 s and
τ = 1.5 ns. For a 10-MHz system clock the setup time is ts = 20 ns, and hence
ts < (100 − 20) ns or about 80 ns. If the asynchronous input changes at a
mean frequency of α = 100, 000 times per second then the MTBF according
to (1.31) is:

MTBF = 3.63× 1011 s.

Since we already established that there are 32 × 106 s in a year, this MTBF
corresponds to more than 100 centuries! Of course, if 20, 000 of these synchro-
nizer chips are sold per year, then at least one device could be expected to
fail each year.

Increasing the clock speed can shorten the MTBF disastrously. Suppose
the previous system is upgraded to use a 16 MHz clock but the synchronizer
components remain in place. What is the new MTBF? Repeating the same
calculation procedure gives:

1.8 Metastable Lifetimes 43

MTBF = 3.1 s.

It is noteworthy that the MTBF is now much smaller than the MTTR. If
it only took an hour to repair the failure (optimistic for such an insidious
problem) by replacing the synchronizer with a faster technology, the average
availability would become

A = 0.086% .

This is a numerical definition of “Dead in the water!” The only good news
here is that the upgraded computer system would probably never make it
beyond any kind of system bootup test without a complete redesign. ��

1.8.2 Macroscopic Metastability

The failure of important communication networks over the last decade has
become all too familiar. The entire AT&T phone system was brought to its
knees in 1990 by a software bug that escaped the quality assurance process. A
similar problem occurred in an AT&T frame-relay network on April 14, 1998
that shut down automated bank teller machines and other business activities.
These are examples of sudden but hard failures that were publicly attributed
to “programming” errors.

1.8.3 Metastability in Networks

It is less obvious that a computer network can become degraded very suddenly
even though the average traffic load on the network remains constant. This
sudden congestion manifests itself as a spontaneous collapse in performance,
seen as an orders-of-magnitude drop in packets/second delivered or a con-
comitant increase in packet routing delay. Such effects have been seen on the
Internet since 1986 and led to the implementation of the slow start congestion
avoidance algorithm for TCP/IP. The same algorithm that was intended to
avoid high packet latency became responsible for slowing down the HTTP 1.0
Web protocol.

Clearly, it is important to understand the dynamics of this kind of perfor-
mance collapse so as to choose avoidance strategies that are less sensitive to
future changes on the Internet. How can we picture the sudden onset of this
kind of performance collapse?
The network can be represented as a circuit of queues (Chap 3), where the
queues represent individual network devices such as routers and bridges. The
state of this system is reflected in the queue lengths at these devices. Packets
arrive into a router, possibly enqueue, receive service, and finally depart to
the next routing stage. These simultaneous arrivals and departures cause the
queue length to fluctuate about some average value. The average queue length
determines other performance metrics, e.g., response time and throughput.
These metrics can be calculated most easily if the network is in steady state
with the average queue lengths remaining stable over long periods of time.

44 1 Time—The Zeroth Performance Metric

Tunneling

Queue length

Optimal
local

minimum

Congested
local

minimum

Short
queue

Long
queue

Fig. 1.14. Quantum-like tunneling model of network (router) congestion. The local
minimum that corresponds to congestion (right) is also the global minimum of the
system. Therefore, it will be a long time before the system revisits the optimal
minimum (left) and the average queue become short again

Under certain conditions, such as that shown in Fig. 1.14, certain queues
can fluctuate about more than one stable average length, i.e., a relatively
short stable average, and a relatively long stable average. A long queue means
that it will take a long time before a request is serviced, on average. More
importantly, the presence of two stable queue lengths implies that the network
may fluctuate dynamically between these two extremes. It turns out that
this transition between stable queue lengths can occur very suddenly in real
networks as well as other computer systems [Gunther 2000a, Part III].

Since the queue lengths are a measure of such important macroscopic
performance metrics as response time, it would be very useful to have both
a qualitative and a quantitative understanding of the dynamics of these large
fluctuations or large transients. In conventional modeling approaches, large
transients are difficult to calculate.

Given that there are two stable queue lengths, it follows that there must be
an intermediate or metastable state between them—the maximum separating
the two stable minima in Fig. 1.14. This metastability is analogous to the mi-
croscopic metastability of synchronizers and arbiters discussed in Sect. 1.8.1. A
well-known example of such macroscopic metastability is thrashing in virtual
memory computers. The performance question we would like to address is, for
a given load on the computer system, what is the mean time to thrashing?

Example 1.10. Suppose the likelihood of a computer’s performance degrading
or even failing is exceedingly small, say 0.0001%, and the average request
rate for computational processing is ten requests per second. The meantime
to reach the critical state of failure or severe degradation can be crudely
estimated using (1.30) and (1.31).

1.9 Review 45

Since the parameters are constants, the failure rate is given by the proba-
bility of failure multiplied by the access rate:

λ = 10 × 10−6 ,

and the mean time between failures is then given by

MTBF =
1
λ

= 105 s,

which is about 28 h, or slightly longer than a day! ��

1.8.4 Quantumlike Phase Transitions

The author recognized that the problem of estimating the mean transition
time is analogous to calculating the decay rate of an atom in quantum me-
chanics [Gunther 1989]; it is a kind of one-dimensional phase transition like
that in Fig. 1.14 and known as quantum tunneling [See Gunther 2000a,b].
Clearly, a computer or a network, even though it is stochastic, cannot ex-
hibit quantum behavior in the strict sense of that term. For one thing, all the
probabilities are real-valued, not complex numbers. However, the formalism of
quantum mechanics can be applied if the wave functions are “rotated” in the
complex plane. Then, quantum mechanics becomes identical to the stochas-
tic processes described by statistical mechanics [Albert and Barabasi 2002].
This insight is also reflected in the animated logo for www.perfdynamics.com.
Quantum like phase transition phenomena have since been used to explain the
dynamics operating within telephone networks [Gunther 1990], packet-radio
networks [Gunther and Shaw 1990], as well as more socially-oriented networks,
including everything from stock market crashes [Sornette 2002] to Hollywood
blockbusters [DeVany and Walls 1996].

A significant virtue of the tunneling method is that it enables fast nu-
merical computation versus doing very long simulations. It could therefore be
used in a predictive way to shape the network locally so as to ensure optimal
performance without the risk of global performance collapse. Such schemes
have been considered for admission control in ATM networks.

Related approaches for estimating mean transition times have included
catastrophe theory [Nelson 1984], and large deviations theory [Schwartz and
Weiss 1995]. A readable account of the application of large deviations concepts
to real communications networks can be found in Walrand and Varaiya [1996].

1.9 Review

In this chapter we reviewed some of the concepts of time that appear in the
context of computer system performance analysis. A primary motivation for

46 1 Time—The Zeroth Performance Metric

writing this chapter is the difficulty in finding a discussion of such disparate
concepts in one place.

We examined the more common notion of physical time and contrasted it
with the less familiar concept of logical time together with the corresponding
requirements for implementing both physical and logical clocks. From these
concepts we saw the importance of having rules for synchronization to main-
tain the order of events in distributed computer systems.

Next, we reviewed some of the features of response time, a key system-
level performance metric. We saw how there can be significant variation in real
measurement data of response times, and that this variation often can be fitted
to a gamma probability distribution. In many cases, the gamma distribution
simplifies to the exponential distribution. This is the distribution that is
assumed in solving most of the queueing circuit models in this book.

Finally, we considered measures of computer reliability and metastability.
The exponential distribution also plays an important role there. Metastability
can have a significant impact on computer system performance.

Exercises

1.1. Time zones. What is the current time in Timbuktu? Use the Perl tzset
function to confirm your answer.

1.2. Timing chains. For the timing chain in Fig. 1.6, each “link” has the
following maximal data rates:

Client CPU 500 TPS
NIC card 2400 pkt/s
LAN network 1050 pkt/s
Router 7000 pkt/s
WAN network 800 pkt/s
Server CPU 120 TPS
Server Disk 52.25 IO/s

Where is the bottleneck for a transaction workload that generates 20 pkt/s
and 1 disk I/O?

1.3. Time representations. (a) Using the fields: $sec, $min, $hour, $mday,
$mon, $year, $wday, $yday, $isdst, as arguments to the Perl function
timelocal, find the integer value of your birth date.
(b) Check its correctness by converting the integer to the number of years
since the zeroth epoch on your platform.

1.4. Availability. The MTBF of a computer system is 720 h, or approxi-
mately 1 month of continuous operation. The MTTR is 3 h. (a) Using (1.22),
what is the availability of this system?
(b) How much downtime does this represent over the course of a year?

2

Getting the Jump on Queueing

2.1 Introduction

Think about the times you have had to wait in line because other people
wanted the same thing you did, and you get that sinking feeling so often
associated with the phenomenon of queueing, the bane of modernity. You
queue while commuting to work, while boarding an aircraft, at a grocery
store, at the post office, the doctor’s office or connecting to a Web site (TCP
listen queue).

In this chapter, you will learn how to characterize the phenomenon of
queueing from a more technical standpoint, one that is useful for analyzing the
performance of computer systems. What makes queueing concepts valuable
for the performance analyst is the ability to estimate important performance
metrics, for example, response time and throughput, based on measurable
queue attributes such as server utilization.

Unfortunately, what makes queueing concepts difficult for many perfor-
mance analysts is that queues involve random (or stochastic) behavior that
makes their application unintuitive—especially when expressed in terms of
the usual mathematics found in most textbooks on queueing theory. Conse-
quently, a large class of people who should be using queueing concepts are
excluded by its impenetrability.

The purpose of this chapter in particular, and this book in general, is
to remove that impediment. You should think of the queueing concepts pre-
sented here as a kind of lingua franca for performance analysis. After reading
this chapter, you will have a clearer understanding of terms like throughput,
residence time, and utilization and the relationships between them.

In this chapter we focus on single queues where a customer or request only
visits one queueing center and then departs (also known as open queues) or
returns to the same queue (also known as closed queues). In the next chapter,
we consider requests that are serviced by many queues because multiple queues
are required to analyze the performance of real computer systems.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_2, © Springer-Verlag Berlin Heidelberg 2005

48 2 Getting the Jump on Queueing

Many of the more mathematical aspects of probability theory will be de-
liberately suppressed through the use of averages. This means that higher
moments, such as the variance, cannot be calculated directly, but we can ap-
ply some percentile rules of thumb. After reading this chapter you should have
a stronger intuitive understanding of the basic performance metrics and how
they are interrelated through the characterization of queues.

The general idea is to jump-start you into some of the most powerful results
in queueing theory without invoking much more than high-school algebra. In
Chap. 3 we extend these basics concepts to systems of queues for analyzing
real computer systems. To help you locate a queueing formula in the future,
the Compendium in Appendix E provides a summary with cross-references to
all the formulas presented here and in the next chapter. We commence with
some definitions.

2.2 What Is a Queue?

Like the notion of time discussed in Chap. 1, we begin by checking the dic-
tionary definition. Merriam-Webster online www.m-w.com/ states:

Main Entry: queue
Pronunciation: ‘kyü
Function: noun
Etymology: French, literally, tail, from Latin cauda, coda
2 : a waiting line especially of persons or vehicles.
3 a : a sequence of messages or jobs held in auxiliary storage awaiting
transmission or processing. b : a data structure that consists of a list of
records such that records are added at one end and removed from the other.

Perhaps more significantly for this book, a queue is the natural paradigm for
representing a buffer. For the moment, we assume the the queue has unlimited
waiting room.

Understanding and predicting the availability of telephone lines led to one
of the earliest applications of formal queueing theory [Erlang 1917]. Given
that a telephone system is comprised of a complex switching network, it may
surprise you to know that queueing theory was not robustly applied to the
performance analysis of computer systems until almost 40 years ago [Scherr
1967, Moore 1971, Buzen 1971]. The reason for this historical lag is discussed
in Appendix B.

2.3 The Grocery Store—Checking It Out

Consider a familiar occurrence of queueing: a trip to the grocery store or
supermarket. Having obtained all the items on your grocery list, you head for
the checkout stands. There, you find lines of customers waiting to be served:
the queues (Fig. 2.1). You survey those queues to find the shortest line. Or,

2.3 The Grocery Store—Checking It Out 49

perhaps you also glance at the size of the loads in each shopping cart ahead
of you. You continue to strategize briefly over which queue you think will
deplete the fastest until, finally, you give up thinking about it and just join
one. Having joined the line you think is likely to have the best performance,

Fig. 2.1. A typical grocery store checkout. A customer with a loaded shopping cart
arrives at the left only to enqueue with customers already waiting (some of whom
are getting impatient), while an already served customer happily departs the store

you are shocked to see that the customer currently having their groceries rung
up needs a price check on that item. Your waiting time now goes through the
roof. When this happens to me, I prefer to think of a queue as a line of
customers waiting to be severed !

2.3.1 Queueing Analysis View

Now, here is the grocery store scenario in queueing parlance. The checkout
aisles are the queues, and the cashier is the service center or server. Using our
schematic symbols, the situation at the grocery store can be represented more
abstractly by Fig. 2.2. In a large grocery store there are perhaps ten or more

Server

Waiting line

Arriving
customer

Departing
customer

Fig. 2.2. Grocery checkout represented as queueing center

checkouts. This battery of checkouts form parallel centers or parallel queues
shown schematically in Fig. 2.3.

You, the customer in the grocery store, are a request token in the queue
belonging to the checkout aisle you have selected. As each customer ahead of
you reaches the cashier, a certain amount of time is required to ring up and
bag their groceries. This is called the service time. Full shopping carts take

50 2 Getting the Jump on Queueing

longer to service than ones with fewer items. That is why you checked all the
carts ahead before finally joining your checkout line. The combined waiting
time and service time is called the residence time (denoted R). Many grocery

Checkout queues

Arriving
customers

Departing
customers

Fig. 2.3. Grocery store checkouts represented as parallel queues

stores provide an express lane for customers with fewer than ten purchase
items. Such customers are treated as a special class. With one express lane,
there are two customer classes defined by their respective service times (i.e.,
the number items in their grocery carts). Other stores further distinguish
customers based on whether or not they will pay by credit card or cash. This
corresponds to three customer classes, and so on.

2.3.2 Perceptions and Deceptions

If you had fewer than ten items but the express line happened to be unusually
long you might decide to join one of the shorter lines at a regular checkout.
Even if the service times are longer, your closer proximity to the cashier may
lead to a shorter residence time. In taking this risk you have also created a
multiclass queue.

Notice that the word risk was used. You cannot be certain that your guess
about which line to join was really the best choice and will lead to the shortest
residence time. Unexpected events can upset your strategy. The customer in
service discovers an item is damaged. Replacement means an assistant has to
physically locate the shelf the item came from and bring the replacement item
back to the checkout stand. In the meantime service is halted and frustration
sets in. The automated teller machine goes offline or a customer decides to
write a check as payment. Whatever the cause, the residence time appears to
be unpredictable.

A more subtle level of uncertainty involves your assumption about constant
service times. It was an unfounded assumption because every customer ahead
of you in the queue had a different number of items (most greater than ten
presumably), so the actual service times will vary considerably. With all this
uncertainty, it is surprising we ever endure grocery shopping at all!

2.4 Fundamental Metric Relationships 51

2.3.3 The Post Office—Snail Mail

By way of contrast, a different example of everyday queueing occurs in the
post office—a recognized time waster. A rather obvious difference between

Arriving
customers

Departing
customers

Postal workers

Fig. 2.4. Post office represented as multiserver queueing center

the post office and the grocery store is the existence of just one queue with
multiple servers viz, postal clerks (2.4). Is this the reason it seems to take
forever in the post office? Would it be more efficient if the post office used
parallel queues like the grocery store? We shall address these questions in
Sect. 2.10.2.

2.4 Fundamental Metric Relationships

To further formalize the characteristics of queues for the purpose of computer
performance analysis, we introduce some simple mathematical relationships
based solely on measurable performance quantities. The sophisticated name
used to describe this approach is operational analysis, and the formalism was
developed primarily by Denning and Buzen [1978]. Several textbooks on com-
puter performance analysis [see, e.g., Lazowska et al. 1984] base their queueing
methods on this operational approach. We adopt many of the same notational
conventions. The rest of this chapter presents these observational or opera-

V

W

(A) (C)X

S

R

Fig. 2.5. Components of a queueing center

52 2 Getting the Jump on Queueing

tional laws and only requires a knowledge of intermediate algebra. These ob-
servational laws are the key to understanding the major results of queueing
theory and their practical application to computer performance analysis. Af-
ter reading this chapter, you should have a good grasp of the essentials of
queueing theory without having been consumed by the imponderable mathe-
matics of probability that usually accompanies expositions on formal queueing
theory.

2.4.1 Performance Measures

Returning to our grocery store example, we consider how to characterize the
performance a grocery store checkout in terms of the fundamental measurable
quantities listed in Table 2.1.

Table 2.1. Measurable performance quantities

T Total observation time or measurement period
K Total number of queueing nodes k in the system
A Count of arrivals into system during measurement period T
Ak Count of arrivals into queue k during measurement period T
C Count of global system completions during the period T
Ck Count of completions that departed the queue k during T
Vk Count of repeated visits to the server k during T
Bk Total time server k was busy during measurement period T

In this chapter we mostly discuss single queues, i.e., a single waiting line feed-
ing one or more servers. In Chap. 3 we discuss the representation of computer
systems by more than one queueing center or node in the terminology of PDQ
(Chap. 6). It will be convenient to have a way to enumerate which queue we
are talking about. For this purpose we introduce a k-subscript notation for
each queueing parameter. In this chapter, K = 1, but for a queueing network
with K > 1 queues the subscript k has the range of values 1 ≤ k ≤ K. Proper-
ties that refer to the entire queueing system will generally have the k-subscript
suppressed. When it is obvious that we are discussing a single queue, we will
also tend to drop the k-subscript to keep equations uncluttered.

Counts, such as Ak and Ck, are used by a variety of generic unix per-
formance tools. Different k’s correspond to counters belonging to different
device drivers, e.g., drivers for disk controllers (Sect. 1.6.3) and network in-
terface cards (Sect. 1.6.4). Figure 2.6 shows the packet counts produced by
the Solaris r©netstat command. The busy time Bk is the aggregate of all the
busy periods during the measurement period T . A busy period occurs when
the server is not idle.

Example 2.1. To make the performance characterization concrete, suppose
we stand near the checkout counter for a period of T = 30 minutes and use a

2.4 Fundamental Metric Relationships 53

Name Mtu Net/Dest Address Ipkts Ierrs Opkts Oerrs Collis Q

lo0 8232 loopback localhost 77814 0 77814 0 0 0

hme0 1500 server1 server1 10658566 3 4832511 0 279257 0

Fig. 2.6. Output of Solaris netstat -i command showing packet counts

stopwatch to measure the time it takes for the cashier to ring up the groceries
of 10 customers. The measured busy periods (in minutes) are noted down as:
1.23, 2.01, 3.11, 1.02, 1.54, 2.69, 3.41, 2.87, 2.22, 2.83. As an expedient, we can
assign these values to a Perl array variable called @busyData and compute a
set of performance measures programatically. ��

Since we have collected the busy period measurements for 10 customers,
there must have been C = 10 completions, and therefore at least A = 10
arrivals, during the T = 30 min measurement period. This gives us enough
data to calculate the arrival rate and throughput.

2.4.2 Arrival Rate

In keeping with queueing theory notation, we denote the system arrival rate
by λ. Based on Fig. 2.5 it is defined as:

λ =
A

T
, (2.1)

where A denotes the arrival count in Table 2.1. If we measured the checkout
for a relatively short period T , we would expect the number of customers
completing service to be different from the number of customers that arrived
at the checkout during the same period.

We could have a situation where C = 10 customers complete in T = 30 min
but A = 18 customers have arrived in that same period. However, if we assume
that the number of customers arriving at the checkout does not cause the
queue to grow in an unbounded way (see the stability condition (2.27)), and
we measure the checkout for a sufficiently long period of time, it is legitimate
to expect that the number of customers completing service C will be very
close to the number of customers A that arrived at the checkout during that
same period. In other words, A = C as T → ∞. Dividing both A and C by the
measurement period T to produce (2.1) and (2.4) respectively, we can define
this steady state condition:

λ = X , (2.2)

as a matching of the input and output rates. Equation (2.2) is referred to as
the Flow Balance assumption [Lazowska et al. 1984]. We have suppressed the
subscripts because it is completely generalizable to the system level.

We want the difference (λ − X) to be small. In practice this criterion is
usually satisfied by choosing the measurement period T to be one to two orders

54 2 Getting the Jump on Queueing

of magnitude longer than the average busy period, as it is in Example 2.1.
Using those measurements together with the steady state assumption (2.2),
the Perl program in Example 2.2 calculates a numerical value for the arrival
rate.

Example 2.2.

#! /usr/bin/perl

arrivals.pl

Array of measured busy periods (min)

@busyData = (1.23, 2.01, 3.11, 1.02, 1.54, 2.69, 3.41, 2.87,

2.22, 2.83);

$T_period = 30; # Measurement period (min)

$A_count = @busyData; # Steady-state assumption

$A_rate = $A_count / $T_period; # Arrival rate

printf("Arrival count (A): %6d \n", $A_count);

printf("Arrival rate (lambda): %6.2f Cust/min\n", $A_rate);

Output ...

Arrival count (A): 10

Arrival rate (lambda): 0.33 Cust/min

��
The inverse of the arrival rate 1/λk is called the interarrival period.

In the context of intrinsic computer performance measurement tools the
parameters Ak and Ck correspond to internal counters, usually implemented
as memory locations or registry objects in the operating system. The reported
rates λk and Xk, such as kB/s or pkts/s, are calculated from those counters by
the resident performance tools using the relations (2.3) and (2.1). For example,
Fig. 2.6 shows paging I/O rates reported by the Solaris vmstat command.

procs memory page disk faults cpu

r b w swap free re mf pi p fr de sr s0 s1 s2 s3 in sy cs us sy id

0 0 0 11456 4120 1 41 19 1 3 0 2 0 4 0 0 48 112 130 4 14 82

0 0 1 10132 4280 0 4 44 0 0 0 0 0 23 0 0 211 230 144 3 35 62

0 0 1 10132 4616 0 0 20 0 0 0 0 0 19 0 0 150 172 146 3 33 64

0 0 1 10132 5292 0 0 9 0 0 0 0 0 21 0 0 165 105 130 1 21 78

Fig. 2.7. Output of Solaris vmstat command showing paging I/O rates

In passing, we note that unix is really an experiment that escaped from “the
lab” some 30 years ago and has been mutating ever since. It was never intended
that the simple counters, originally implemented by developers to gauge the

2.4 Fundamental Metric Relationships 55

performance impact of changing the kernel code [Saltzer and Gintell 1970],
would still be used today by a vast array of commercial and noncommercial
performance management tools. A similar comment can be made about other
operating systems. Moreover, the operating system is only one source of per-
formance data, and a very limited one in the context of modern distributed
applications. It is curious then that attempts to standardize on a broader
collection framework with multiple data sources (Appendix D) have not been
widely publicized by vendors or demanded by customers.

2.4.3 System Throughput

Referring to Fig. 2.5, the system throughput (no subscripts):

X =
C

T
, (2.3)

is defined as the total number of requests that completed service during the
measurement period. Using the measurements in Example 2.1 we write a sim-
ple Perl program (Example 2.3) to calculate a numerical value for the system
throughput at the grocery store checkout.

Example 2.3.

#! /usr/bin/perl

thruput1.pl

Array of measured busy periods (min)

@busyData = (1.23, 2.01, 3.11, 1.02, 1.54, 2.69, 3.41, 2.87,

2.22, 2.83);

$T_period = 30; # Measurement period (min)

$C_count = @busyData; # Completion count

$X = $C_count / $T_period; # System throughput

printf("Completion count (C): %6d \n", $C_count);

printf("System throughput (X): %6.2f Cust/min\n", $X);

printf("Normalized throughput: %6d Cust every %4.2f min\n", 1, 1/$X);

Output ...

Completion count (C): 10

System throughput (X): 0.33 Cust/min

Normalized throughput: 1 Cust every 3.00 min

��
The throughput is 0.33 customers per minute or, expressed a little more in-
tuitively, 1 customer completes every 3 min.

56 2 Getting the Jump on Queueing

2.4.4 Nodal Throughput

Whereas the system throughput in (2.3) can be thought of as a global view of
throughput, each queueing node can also have its own local throughput:

Xk = Ck/T . (2.4)

In the case where there is only one queue, the nodal throughput (2.4) is
identical to (2.3). The system throughput (and other system parameters) have
no subscript.

2.4.5 Relative Throughput

As noted in Chap. 1, real computer system is generally comprised of a number
of subsystems such as processors, disks, various types of memories that operate
on different time scales. We could measure the completions at each component
subsystem (local completions), and we could also measure the throughput of
the entire computer system (global completions). In general, we would get
different results because the completions are measured in different units. The
number of local disk operations, for example, is likely to be more than the
number of global database transactions because each completed transaction
invokes multiple reads and writes.

These local and global measures can be related via the so-called forced flow
law which states that the number of local completions and global completions
must be proportional:

Ck ∝ C . (2.5)

in steady-state. The constant of proportionality is the number of local oper-
ations executed during T or the visit count Vk. Hence,

Ck = VkC . (2.6)

If a single database transaction requires 3 disk operations, then there must be
Vdisk = Ck/C = 3 visits to the disk per transaciton. If we divide both sides of
this proportionality by T and substitute (2.4) we find:

Xk = VkX , (2.7)

which is called the relative throughput. The forced flow law requires that the
throughputs (or flows) must also be in relative proportion in steady-state. The
visit count is not always an integer.

Example 2.4. A database server pulls 20,108 tmpC in a TPC-C benchmark.
Each transaction induces approximately 6 IO/s at a disk. How many disks
should be configured for the benchmark?

20, 108 tpmC
60 s

= 335.13 TPS.

2.4 Fundamental Metric Relationships 57

By the forced flow law (2.7):

Vdisk =
6 IO/s

335.13 TPS
= 0.018 =

1
55.56

IO per transaction .

Therefore, each TPC-C transaction requires at least 56 physical disks. ��
We shall make use of the concept of relative throughput in Chap. 3.

2.4.6 Service Time

The service time is the time spent per customer at the actual cash register of
the checkout at the grocery store. More formally, the average service time at
a particular queueuing node k

Sk =
Bk

Ck
, (2.8)

is the busy time Bk per customer.

Example 2.5.

#! /usr/bin/perl

servtime.pl

Array of measured busy periods (min)

@busyData = (1.23, 2.01, 3.11, 1.02, 1.54, 2.69, 3.41, 2.87,

2.22, 2.83);

Compute the aggregate busy time

foreach $busy (@busyData) {

$B_server += $busy;

}

$C_server = @busyData; # Completions

$S_time = $B_server / $C_server; # Service time (min)

printf("Number of completions (C): %6d \n", $C_server);

printf("Aggregate busy time (B): %6.2f min\n", $B_server);

printf("Mean Service time (S): %6.2f min\n", $S_time);

Output ...

Number of completions (C): 10

Aggregate busy time (B): 22.93 min

Mean Service time (S): 2.29 min

��
Equation (2.8) can be read as the busy time per customer. Since Sk has the
units of time (min in Example 2.5), the corresponding rate μ = 1/Sk is formed
from the inverse of (2.8) and is called the service rate. It provides an alternative
way to characterize a server. In general, we prefer to use the service time
throughout this book.

58 2 Getting the Jump on Queueing

2.4.7 Service Demand

Implicit in the definition of (2.8) is the notion that the customer, or request,
only requires one visit to the server. When multiple visits are required (e.g.,
when a customer forgets to purchase an item at the grocery store in Sect. 2.3),
we generalize the definition of service time to:

Dk = VkSk , (2.9)

where Vk is the average number of visits to queueing center. Dk is called the
service demand. We shall consider the precise definition of Vk in Chap. 3. In
subsequent expressions for derived performance metrics such as residence time
and queue length, the reader should keep in mind that they can be expressed
in terms of the service demand Dk. For clarity, however, we shall replace Dk

by Sk without loss of generality.

2.4.8 Utilization

Following queueing theory convention, the utilization is denoted by ρ. The
utilization of the server at queueing node k is the fraction of time that the
server is busy during the measurement period T . More formally:

ρk =
Bk

T
. (2.10)

Since the busy time cannot exceed the measurement period (Bk ≤ T), it
follows that the utilization is bounded in the range:

0 ≤ ρk ≤ 1 . (2.11)

Since ρk in (2.10) is a ratio of two times, it has no formal units (it is dimen-
sionless) and is therefore often expressed as a percentage.

Applying (2.10) to the data in Example 2.1 the utilization of the checkout
cashier is calculated in Example 2.3.

Example 2.6.

#! /usr/bin/perl

utiliz1.pl

Array of measured busy periods (min)

@busyData = (1.23, 2.01, 3.11, 1.02, 1.54, 2.69, 3.41, 2.87,

2.22, 2.83);

Compute the aggregate busy time

foreach $busy (@busyData) {

$B_server += $busy;

}

2.5 Little’s Law Means a Lot 59

$T_period = 30; # Measurement period (min)

$rho = $B_server / $T_period; # Utilization

printf("Busy time (B): %6.2f min\n", $B_server);

printf("Utilization (U): %6.2f or %4.2f%%\n", $rho, 100 * $rho);

Output ...

Busy time (B): 22.93 min

Utilization (U): 0.76 or 76.43%

��
As Example 2.3 demonstrates, it is preferable to use the decimal represen-
tation of ρ during the calculation and convert to percentages at the end. In
Sect. 2.5, we shall see that the server utilization can also be defined in terms
of another fundamental relationship called Little’s law.

2.4.9 Residence Time

The average residence time Rk is the total time spent at the queueing center.
It is the total time you spend getting through the checkout in the case of
the grocery store. It is the sum of the average time spent waiting in line Wk

together with the average service time Sk once you get to the cashier (Fig. 2.5).
More formally:

Rk = Wk + Sk . (2.12)

Similarly, the time you spend at the dentist is the time you spend in the
waiting room plus the time you spend in the chair.

In contrast to the residence time, the average response time:

R =
K∑
k

Rk , (2.13)

is the sum of the average residence times (2.12) at each of k queueing centers
in a system of queues (see Chap 3). This is also referred to as the end-to-
end response time. When k = 1, the response time and the residence time
are identical. We shall these terms interchangeably when the meaning is clear
from the context.

Although (2.12) provides a fundamental definition of residence time, very
often both the residence time and the waiting time need to be calculated.
In other words, if we do not know Wk, we cannot determine Rk. We need
expressions for the residence time that do not involve Wk directly, and that
is what we consider in the following sections.

2.5 Little’s Law Means a Lot

Sometimes even seasoned performance analysts fail to appreciate just how
powerful averages can be for understanding the otherwise very complicated

60 2 Getting the Jump on Queueing

dynamics of queues. One of the most powerful application of averages is con-
tained in a simple mathematical relation known as Little’s law. Little’s law
appears in many guises throughout the literature on performance analysis of
both computer systems and manufacturing systems.

In queueing theory notation, Little’s law:

Qk = λRk , (2.14)

states that the average queue length Q is equal to the average arrival rate λ
into the queueing center defined by (2.1) multiplied by the time spent at the
queueing center, i.e., the average residence time R defined by (2.12). Applying
the definitions of the utilization (2.10) and arrival rate (2.1), we can also write:

ρk =
Ck

T
× Bk

Ck
= λSk . (2.15)

This is a special case of (2.14) where the waiting time prior to receiving service
is not included.

2.5.1 A Little Intuition

Equation (2.14) can be appreciated intuitively with the aid of the following
example. It is the “rush hour” commute and you are stuck in traffic at the
entrance to a toll way. At this time of day it takes 15 min to get past the toll
booths and onto the freeway. While waiting, you start counting cars arriving
at the toll-way entrance during a 5 min interval. You see 25 new cars in 5
min. How many cars are waiting with you at the toll entrance? Little’s law
tells us how to estimate that number.

We know the arrival rate λ is 25 new cars in a 5 min period, and we know
that it takes 15 min to get through the toll entrance, which is our residence
time R. Applying (2.14) produces:

25 new cars
5 min

× 15 min = 75 cars . (2.16)

Here, Q = 25 cars refers to the total number of cars enqueued at the toll
entrance. It is an average value because there may actually be more or fewer
cars, statistically speaking. If a sufficient number of measurements are re-
peated, however, they should converge to the value predicted by Little’s law.

Seen in this way, Little’s law may not appear all that remarkable. But
remember that queues, like a toll-way entrance or the line at the grocery
checkout, are subject to significant fluctuations over short intervals of time.
The exact number of cars or customers enqueued at any instant cannot be
known ahead of time, it can only be expressed as a probability estimate. Even
in the presence of fluctuations, however, an essential feature of queueing can
be expressed in terms of the average quantities in Little’s law. This result is
actually more general than queueing theory and J. D. Little [1961] (see www.

2.5 Little’s Law Means a Lot 61

informs.org/Prizes/whoisLittle.html) has his name attached to (2.14)
because he was the first to prove it mathematically in a way that included
the complexity of fluctuations. In Sect. 2.5.2 we present a simpler graphical
proof.

As a reminder of complexity involved in queueing, Fig. 2.8 shows the num-
ber of customers in a single queueing center as a function of time. The height
of each bar corresponds to the number of resident customers at each time
step. The time series in Fig.2.8 looks erratic. That is because it is erratic!

Elapsed time (t)

In
st

an
ta

ne
ou

s
qu

eu
e

le
ng

th

Measurement
Period (T)

Fig. 2.8. The instantaneous value of the queue length or the number of customers
in the system as a function of time t. These values are reported in performance
monitoring tools like the unix load average (discussed in Chap. 4)

It is stochastic. Arrivals and departures at the queueing center are stochas-
tic processes that are represented by probability distributions. As promised
in Sect. 2.1, our goal throughout this book is to understand and apply the
results of queueing theory without getting too deeply into the mathematics
of stochastic processes. A fundamental relationship that helps to make this
possible is Little’s law.

2.5.2 A Visual Proof

In this section we examine more closely what happens in the queueing process
to see how the average quantities in Little’s law can be extracted from the
otherwise erratic behavior of queues. In Fig. 2.9, we have plotted a section of
Fig.2.8 in such a way as show both arriving customers (the upper curve) and
departing customers (the lower curve) at each time step during some mea-
surement period T . The area contained in the shaded region between the two
curves corresponds to the total number of customer-seconds elapsed during
the measurement period T . It is defined by end points where the number of
arrivals equals the number of departures. The reason for this assumption is
to ensure that customers are not spontaneously created or removed from the

62 2 Getting the Jump on Queueing

Arrivals

Departures

Time

N
um

be
r

in
 s

ys
te

m

Measurement period (T)

Fig. 2.9. The number of arrivals (upper edge) and departures (lower edge) per time
step. The shaded region is the number of customers remaining in the system per
time step

system during the measurement period. The system is said to be work con-
serving. We now demonstrate that the size of shaded area can be calculated
in two different ways, and that equating the two results leads to Little’s law.

First, we find the total area contained in the shaded region of Fig. 2.9
by summing the six horizontal subrectangles marked out in Fig. 2.10. The
numerical values are summarized in Table 2.2 with the corresponding col-
umn totals presented on the last line. Each rectangle has either unit height
(corresponding to one arrival) or zero height (corresponding to no arrivals).
Recalling the definition for the measured number of arrivals, A in Table 2.1,
we see that the total height corresponds to the cumulative number of arrivals
during the measurement period. Since there are 6 non-zero steps, A = 6 total
arrivals during T .

T

A(T)

0 R

Fig. 2.10. Shaded area of Fig. 2.9 arranged into 6 horizontal rectangles. The large
uniform rectangle (left) of dimension A × R represents the equivalent aggregated
area

2.5 Little’s Law Means a Lot 63

The numbers in the right column of Table 2.2 are the individual rectangle
areas, and their sum gives the area of the shaded region:

area = sum of rectangular areas = 11 units. (2.17)

The height of each rectangle is 1 unit. The width of each horizontal rectangle
(the left column of Table 2.2) represents the actual time each arrival spends
in the system. The area can also be calculated as the sum of these widths

Table 2.2. Data for horizontal rectangles. The last row shows the totals for each
column. Note that the segment with no rectangle (center) does not contribute since
there is no new arrival in that step

Rectangle Width Height Area

1 2.00 1 2.00
2 2.00 1 2.00
3 2.00 1 2.00
4 1.00 1 1.00
5 3.00 1 3.00
6 1.00 1 1.00

11.00 6 11.00

multiplied by their common height:

area = common height × total width = (1 × 11.00) = 11.00 units. (2.18)

The average residence time R is the average time that arrivals spend in the
system. Therefore R corresponds to the average rectangular width in Fig. 2.10.
Equivalently, R is the total width divided by the number of rectangles. Mul-
tiplying and dividing (2.18) by the six horizontal rectangles produces:

area = (6 × height) × total width
6

= A × R. (2.19)

In this last step of our analysis of the horizontal rectangles in Fig. 2.10, we
see that the shaded area corresponds to the total number of arrivals during T
multiplied by their average residence time.

Turning now to Fig. 2.11, we calculate the shaded area of Fig. 2.9 by sum-
ming the eleven vertical rectangles. The results are summarized in Table 2.3.
The sum of the rectangle widths, by definition, must equal the length of the
measurement period T = 8. The width of each rectangle corresponds to a
time interval where there was no change in either the number of arrivals or
departures. The height of each vertical rectangle corresponds to the number
of customers in the system during that time interval. If the intervals were
infinitesimally small, the height of each vertical rectangle would correspond
to the instantaneous number of customers in the system or the instantaneous
queue length. The time-averaged number of customers in the system Q is given

64 2 Getting the Jump on Queueing

0 T

Q

Fig. 2.11. Shaded area of Fig. 2.9 arranged into 11 vertical rectangles. The shaded
region shows the equivalent area aggregated into a uniform rectangle of dimension
Q× T

by the sum of all the vertical rectangle areas divided by the total measurement
period T :

Q =
sum of vertical areas

T
. (2.20)

In Fig. 2.11, Q is shown as a large uniform rectangle at the bottom of the
figure. It is the average number of customers in the system during the mea-
surement period T .

Table 2.3. Data for vertical rectangles. The last row shows the totals for each
column, Here, the 8th rectangle width is part of the total measurement period even
though it has zero height

Rectangle Width Height Area

1 1.00 1 1.00
2 1.00 2 2.00
3 0.25 3 0.75
4 1.00 2 2.00
5 0.25 1 0.25
6 0.50 2 1.00
7 0.50 1 0.50
8 0.50 0 0.00
9 2.00 1 2.00
10 0.50 2 1.00
11 0.50 1 0.50

8.00 16 11.00

To arrive at Little’s law, we need to relate the shaded area in Fig. 2.9 to
the average number of customers Q in the system. Multiplying and dividing

2.5 Little’s Law Means a Lot 65

the area in Fig. 2.11 by the measurement period T produces:

area =
sum of vertical areas

T
× T = Q × T. (2.21)

where we substituted (2.20) for Q. From this analysis of the vertical rectangles
we find that the shaded area corresponds to the average number of customers
in the system multiplied by the measurement period.

Finally, bringing all these areal relationships together we establish Little’s
result. From (2.19) we know that the area can be expressed as AR = 11 units.
We also know from (2.1), that the measured arrivals is related to the arrival
rate by A = λT so (2.19) can be rewritten as:

area (horizontal) = 11 = (λT)R. (2.22)

From (2.21) we know that the area can also be expressed as:

area (vertical) = 11 = QT. (2.23)

Since the areas are identical, we can combine (2.22) and (2.23) into a single
equation:

QT = (λT)R, (2.24)

which, after canceling the factors of T , reduces to (2.14), as promised.
This visual proof brings out another important point. So far, we have

not been very clear about what we meant by the term average. Little’s law
refers to the average number of customers in the queueing system (under the
assumption that it is work conserving). But averaged over what?

In the above example Q = λR = 0.75× 1.8333 = 1.375 customers. Could
we not have estimated the same number using the data in Table 2.3? The
total of the Width column is the period T = 8, and the total of the Height
column is N = 16, the aggregate number of customers in the system during T .
Therefore, we might expect that N/T should give us the correct average for
Q. But N/T = 16/8 = 2. Alternatively, if we average N over the number of
vertical rectangles V , we get N/V = 16/11 = 1.455. Why are all these averages
different?

The average N/V is simply an arithmetic average of the rectangle heights,
not a time-based average. Since N > V , the ratio N/V overestimates the value
of Q. The average formed by N/T on the other hand, assumes the sample
intervals (widths) are uniform when, in fact, they are not. Each rectangle
needs to be weighted by its width to give the correct proportion of time that
a customer spends in the system relative to T . The timebase is correct but the
customer population is not weighted correctly so N/T incorrectly estimates
Q. From this we see the importance of the term time-weighted average. We
return to this concept in Chap. 4.

66 2 Getting the Jump on Queueing

2.5.3 Little’s Microscopic Law

As we did in the case of deriving Little’s law, let us assume a computer system
can be treated as a black box with measurement duration sufficient to justify
the assumption that the number of arrivals into the system equals the number
of completions departing from it. The utilization of a server, defined in (2.10),
is the average fraction of time the server is busy. We can rewrite ρ as:

ρ =
C

T
× B

C
. (2.25)

On substituting (2.4) and (2.8) into (2.25) it becomes:

ρ = X S = λS. (2.26)

It is microscopic version of Little’s law, also known as the utilization law.
Since ρ is related to the service time at the center, we can also interpret it as
the mean number of customers in service at the center.

Example 2.7. Consider a disk that is servicing 50 I/O per second from an
application. Using the available performance monitoring tools, the average
I/O service time is determined to be 10 ms. The utilization law given by 2.26
tells us that the disk must be 50×0.010 = 51% busy. Notice that the concept
of queue length did not enter this calculation. ��

Because a server cannot be more than 100% utilized, we have ρ ≤ 1, and
from (2.26) it follows that:

λ < S−1 (2.27)

in order that the queue not grow in an unbounded way.

2.5.4 Little’s Macroscopic Law

By an analogous argument, we can determine the mean number of resident
customers in the system. Let

• τ be the total residence time summed over all completions
• R be the mean residence time per completion τ/C
• X be the mean system throughput

The queue length (or the total number of requests in the system) can now be
expressed as:

Q =
τ

T
=

C

T
× τ

C
, (2.28)

from which it follows that:

Q = XR = λR. (2.29)

2.6 Unlimited Request (Open) Queues 67

Equation (2.29) is the macroscopic version of Little’s law, which can be written
either in terms of the throughput X or λ as a consequence of the steady-state
assumption in (2.2).

By analogy with (2.26), Q is a measure of system occupancy: the mean
number of customers in the system. Since we could rewrite (2.29) as

Q = λ(W + S), (2.30)

it is clear that the difference between (2.26) and (2.29) is that the latter
includes the waiting time W .

Example 2.8. Consider the previous example of disk servicing 50 I/O per sec-
ond and include buffering that might be present at the disk controller or
in the device driver. Suppose the average number of buffered requests is 5.
What is the average time spent at the disk? Rearranging (2.29) we find that
R = 5/50 = 100 ms. Subtracting out the known service time of 10 ms, we see
that an I/O request spends 90 ms in the buffer. ��

2.6 Unlimited Request (Open) Queues

Up to this point, we have just been establishing an appropriate set of rela-
tionships between directly measurable quantities pertaining to a single queue.
These relationships are expressed purely in terms of the average values of mea-
surable quantities. Keeping in mind that queues actually behave according to
random or stochastic processes, the degree of simplification afforded by the
use of averages is quite remarkable. We now employ these observational laws
to characterize some of the most common queueing configurations that arise
in computer system performance analysis.

2.6.1 Single Server Queue

Figure 2.2 assumes that the number of customers arriving from outside the
checkout queue is not limited. In other words, there is an infinite pool of
customers outside the grocery store. Some fraction of this pool is arriving
into the checkout queue at a rate λ. For this reason, the queues we discuss in
this section are termed open queues.

It is possible that some many customers might arrive at the checkout that
the queue could become infinitely long. To avoid this situation, we assume
that the stability condition (2.27) holds.

Denoting the service rate by μ = S−1, (2.27) can also be written as λ < μ. This
condition says that the arrival rate must be less than the service rate in order that
the waiting line at an open queue not become infinitely long.

In Sect. 2.8) we discuss the case where the number of customers is limited to
some finite value (like a buffer).

68 2 Getting the Jump on Queueing

2.6.2 Measured Service Demand

In cases where the the service time and the number of visits are difficult to
measure, Little’s law (2.26) can be rearranged as:

Dk =
ρk

X
, (2.31)

to calculate the service demand (2.9) rather than the service time.
As noted in Sect. 2.4.2, only measurements that have been sampled over

a reasonable period of time should be used to evaluate the performance pa-
rameters ρk, A, and Dk. A reasonable period T means many multiples of the
longest busy period.

2.6.3 Queueing Delays

As you approach a checkout in the grocery store (Sect. 2.3), your expected
time to get through it, i.e., your residence time (Sect. 2.4.9), consists of two
components:

1. The expected time for all those ahead of you to complete their service,
i.e., a queueing component.

2. Your expected service time once you get to the cashier, i.e., a service
component.

Since the average service time S is assumed to be the same for every cus-
tomer and the average queue length is Q, the expected time for you to reach
the cashier is QS. These two components of your residence time can be sum-
marized as:

R = QS + S . (2.32)

We have dropped the k-subscripts for convenience here. If you were the only
customer arriving at the checkout, then Q = 0 (no queueing) and your resi-
dence time would be precisely S. Otherwise, you have to join the end of the
line and wait.

Using Little’s macroscopic law (2.14) to replace Q in (2.32) by λR gives:

R = (λR)S + S . (2.33)

Solving for R we find:

R =
S

1 − λS
, (2.34)

and a further substitution of Little’s microscopic law (2.15) into the denomi-
nator of (2.34) results in:

R =
S

1 − ρ
. (2.35)

2.6 Unlimited Request (Open) Queues 69

The following rules of thumb for the dispersion of M/M/1 residence times:

R = 1S at ρ = 0 ,

R = 2S at ρ = 1/2 ,

R = 4S at ρ = 3/4 ,

follow from (2.35) and are also visually evident in Fig.2.12.

Equation (2.35) enables the average residence time to be determined, even if
the arrival rate is not known. The measured utilization at the server can be
used instead. The residence time characteristic for a single server queueing

0

2

4

6

8

10

12

14

16

18

20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Utilization

N
or

m
al

iz
ed

 R
es

id
en

ce
 T

im
e

(R
/S

)

Fig. 2.12. Typical response time characteristic for a single server queueing center.
For convenience, the response time R has been normalized to the service time S so
that R/S = 1 at zero server utilization

center is plotted in Fig. 2.12 as a function of the server utilization. To make
the curve more generic, the response time R has been scaled by the service
time S to produce the normalized queueing delay R/S. Since the utilization
ρ is bounded (2.11), it follows that R is essentially equivalent to the service
time when ρ � 0, while it rapidly approaches an infinite value as ρ → 1. This
happens because the queue length becomes unbounded when the stability
condition (2.27) is not satisfied, i.e., when ρ = 1.

70 2 Getting the Jump on Queueing

We can also interpret (2.35) as an inflated service time. The inflation factor
is (1− ρ) for a single server. Since ρ can be interpreted as the fraction of time
the server is busy (during T), the quantity (1 − ρ) can be interpreted as the
fraction of time the server is available. If the server is available, then R = S
because there is no queueing.

Multiplying both sides of (2.35) by λ produces:

Q =
ρ

1 − ρ
, (2.36)

which is the average queue length expressed as a function of the server uti-
lization. It is also equivalent to the mean number of requests in the system—a
single waiting line and a single server in this case.

If, instead of being in a grocery store, you were on the phone waiting for
customer support to answer, you might consider your waiting time to be far
more critical than your residence time. From (2.32) we see that your expected
waiting time W as you join the queue (Fig. 2.5) is given by:

W = QS . (2.37)

Multiplying both sides of (2.36) by S produces:

W =
ρS

1 − ρ
, (2.38)

which is the waiting time counterpart of (2.35) expressed in terms of the
server utilization. The average length of the waiting line L can be determined
by writing Little’s law (2.14) as L = λW and appling it to (2.38) to give:

L =
ρ2

1 − ρ
. (2.39)

Equation (2.39) can be verified by noting that

L = Q − ρ , (2.40)

which states that the waiting line length is equal to the queue length minus
the average number of customers in service. Substituting (2.36) into (2.40)
and simplifying also establishes (2.39).

A cautionary note is in order. It may seem contradictory that the waiting time
W in (2.37) is expreseed in terms of the total queue length Q rather than the
length of the waiting line L. You may be thinking (2.37) should be written as
W = LS, but that is incorrect. By definition, the waiting line length L excludes
the customer currently in service, but the waiting time W must include the time
for the customer currently in service. Hence, W = QS and therefore W �= LS.

It is noteworthy that these results for the average queueing delays at a single

2.6 Unlimited Request (Open) Queues 71

server queue are identical to those that would be obtained using the more
mathematical methods of probability theory and stochastic analysis [See e.g.,
Kleinrock 1976, Allen 1990].

Example 2.9. Measurements of a network gateway reveal that packets arrive
on average at 125 packets per second (pps) and the gateway takes about 2 ms
to forward them on.

Performance metric Symbol Value Unit
Service time S 2.00 ms
Server utilization ρ 25.00 percent
Number of pkts in gateway Q 0.33 pkts
Mean waiting time W 0.66 ms
Mean response time R 2.66 ms

Using this information, the performance characteristics can be tabulated using
the results of Sect. 2.6.3. ��

The utilization can be thought of as reflecting the request load on the
server. Under a light load (ρ < 0.50), the response time is close to the average
service time. As the load is increased above 50%, however, the response time
increases slowly at first and then very dramatically under heavy loads (ρ �
0.50). The reader might care to compare this definition of load based on
utilization with the definition of the unix load average discussed in Chap. 4.

Example 2.10. This example uses a Perl program to calculate various delays
for the grocery store data in Example 2.1.

#! /usr/bin/perl

residence.pl

Array of measured busy periods (min)

@busyData = (1.23, 2.01, 3.11, 1.02, 1.54, 2.69, 3.41, 2.87,

2.22, 2.83);

Compute the aggregate busy time

foreach $busy (@busyData) {

$B_server += $busy;

}

$T_period = 30; # Measurement period (min)

$C_server = @busyData; # Completions

$S_time = $B_server / $C_server; # Service time (min)

$rho = $B_server / $T_period; # Utilization

$R_time = $S_time / (1 - $rho); # Service time (min)

$Q_length = $rho / (1 - $rho); # Queue length

$W_time = $Q_length * $S_time; # Waiting time (min)

printf("Service time (S): %6.2f min\n", $S_time);

printf("Utilization (rho): %6.2f \n", $rho);

printf("Residence time (R): %6.2f min\n", $R_time);

72 2 Getting the Jump on Queueing

printf("Queue length (Q): %6.2f \n", $Q_length);

printf("Waiting time (W): %6.2f min\n", $W_time);

Output ...

Service time (S): 2.29 min

Utilization (rho): 0.76

Residence time (R): 9.73 min

Queue length (Q): 3.24

Waiting time (W): 7.44 min

��
By virtue of (2.35) the nonlinear curve in Fig. 2.12 is a hyperbola. When

lightly loaded, the queueing center operates near the foot of the hyperbola,
while under heavy loading the delay climbs quickly up in the leg of the curve.
As the load approaches 100% busy, the response time becomes infinite. To
avoid such unbounded queue growth, we assume the condition ρ < 1 holds.

The average response time R in (2.35) is the mean of a very large set of
response times that are exponentially distributed (Sect. 1.5.2), so the following
rules of thumb apply:

1. 80th percentile occurs at R80 � 5R/3
2. 90th percentile occurs at R90 � 7R/3
3. 95th percentile occurs at R95 � 9R/3

These rules of thumb can be used to compute the corresponding percentile
curves of the response time distribution shown in Fig. 2.13. We observe from
Fig. 2.12 that at ρ = 0.50 the queueing delay causes the response time to
become twice the service time, while at ρ = 0.75 the delay has increased
to four service times. Once again, this reflects the hyperbolic nature of the
response time characteristic.

Example 2.11. Let the service time S = 1 s, and let the interarrival time be
2 s. What is the mean response time and the mean queue length? From (2.15),
the utilization can be evaluated as:

ρ = λS.

Since λ−1 = 2, it follows that λ = 0.5 / s. Substituting these values produces:

ρ = 0.5× 1.0 = 0.5,

from which we conclude that the server is 50% busy. The mean response time
is:

R =
S

1 − ρ
= 2.0 s,

and
Q =

ρ

1 − ρ
= 1.0

is the mean number of requests in the system. ��

2.6 Unlimited Request (Open) Queues 73

0

2

4

6

8

10

12

14

16

18

20

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Utilization

N
or

m
al

iz
ed

 R
es

po
ns

e
P

er
ce

nt
ile

s R_avg

R_80

R_90

R_95

Fig. 2.13. Percentiles for exponential response times

Let us summarize our analysis of queues so far. We have established a set
of parameters such as arrival rate λ and service time S that can be used to
characterize a uniserver queue. These parameters are related to one another
through relationships such as Little’s law. In general, these relationships are
called observational laws in the performance literature. Applying these ob-
servational laws, we developed an equation for calculating the mean response
time of a uniserver queue without resorting to any of the usual sophisticated
stochastic analyses found in most performance textbooks. The corresponding
Perl PDQ model for the single-server open queue is presented in Chap. 6,
Sect. 6.7.2.

With these concepts in place for a single queue, we now have a good
foundation upon which to analyze more sophisticated queues. Consider what
happens when another queueing center is made available to handle arrivals.
Such a twin queue configuration is logically equivalent to opening another
checkout line in the grocery store.

2.6.4 Twin Queueing Center

Figure 2.14 shows the flow of identical customers into a twin queueing center,
where each queue has its own server and each server has the same average
service time S. The original stream of arrivals having rate λ is split into two
equal substreams each with intensity λ/2. Equation (2.33) can be rewritten
as:

74 2 Getting the Jump on Queueing

Checkout queues

Arriving
customers

Departing
customers

Fig. 2.14. Twin (q = 2) parallel queueing centers

R =
(

λ

2
R

)
S + S , (2.41)

where we have applied Little’s macroscopic law Q = λR/2 to the substream.
Rearranging in the same way as before and solving for R, we find:

R =
S

1 − 1
2λS

, (2.42)

The only difference between (2.42) and (2.34) is the factor of a half appearing
with the utilization in the denominator. Emphasizing the utilization at a single
queueing center with the notation ρ1 = λS, we can rewrite (2.42) as:

R =
S

1 − 1
2ρ1

. (2.43)

The residence time at the twin center is shorter than that for the single center
in Sect. 2.6.1 because the server in the twin center is only half as busy as the
single center due to the splitting of arrivals into two equal streams.

2.6.5 Parallel Queues

We can generalize the twin queueing center to q parallel queueing centers
depicted in Fig. 2.15. The q-parallel center response time becomes:

R =
S

1 − 1
q
λS

. (2.44)

Clearly, ρ1 = λS becomes smaller as q increases, and so therefore does R. In
fact, as q → ∞, it follows that R → S because every arrival tends to get its
own server in Fig. 2.29, and there is no queueing. We shall make use of this
utilization scaling in Sect. 7.4.2.

Another way to write (2.44) is to define the offered load or traffic intensity
as:

qρ = λS , (2.45)

for a q-parallel center. Equation (2.44) can then be written as:

2.6 Unlimited Request (Open) Queues 75

Checkout queues

Arriving
customers

Departing
customers

Fig. 2.15. q parallel queues

R =
S

1 − ρ
. (2.46)

which is identical in form to single server queue (2.35), with the proviso that
the utilization is defined by (2.45) so that the stability condition ρ < 1 is still
satisfied.

Example 2.12. Many Internet service providers (ISP) employ a terminal-style
interface, called chat rows, to field technical support questions from their
subscribers. For example, callers may assign themselves randomly to one of
ten such chat rows and then wait until they are prompted by a technician to
explain their problem. Once the caller has selected a chat row, they cannot
defect to another row. Each chat row is serviced by a technician, and all
discussions are carried on via their respective keyboards.

Measurements show that callers connect at an average rate of three per
minute. Each caller waits an average of three minutes before being addressed
and then two minute chatting with the technician before signing off. Sub-
scribers have complained about the average waiting time of three minutes.
Consequently, the ISP would like to know how many more technicians should
be added to reduce the waiting time to an average of one minute. The chat
rows can be modeled as ten parallel queues.

The mean arrival rate is λ = 3 calls per minute (cpm). The mean service
time is S = 2 min, so the utilization is ρ = 3 × 2 = 6 or 600%. Using the
definition ρ = λS/q with q = 10, the load on each chat server is ρ = 0.60. The
response time can be calculated from (2.44) as:

R =
2

1 − 0.60
= 5 min.

The mean waiting time is therefore:

W = 5 − 2 = 3 min,

which is what the subscribers are complaining about. The existing situation
is summarized in the following table.

76 2 Getting the Jump on Queueing

Performance Metric Symbol Value Unit
Number of technicians q 10 n/a
Mean throughput X 3 pps
Service time S 2 ms
Utilization ρ 60 percent
Mean response time R 5 min
Mean waiting time W 3 min

The first three lines show input parameters while the lower part of the table
shows model outputs.

Performance Metric Symbol Value Unit
Number of technicians q 18 n/a
Mean throughput X 3 pps
Service time S 2 ms
Utilization ρ 33 percent
Mean response time R 3 min
Mean waiting time W 1 min

By trial and error choices for q, we find that adding another 8 technicians
(for a total of 18) will bring the waiting time down to the required 1 m. The
results are summarized in the above table. ��

When we present shorthand notations for queues in Sect. 2.9.2, we shall
see that there is no special notation for parallel queues. The reason should
be clear. Equation (2.46) states that a q-parallel center is mathematically
equivalent to q single queues each serving one qth the workload.

2.6.6 Dual Server Queue—Heuristic Analysis

Suppose we add an identical server to the common queue as shown in Fig. 2.16.
Nothing else is changed. This is the service configuration one typically finds
for bank tellers, post office clerks (Sect. 2.3.3), call centers (see Sect. 2.7.1)
and multiprocessor CPUs. (see Chap. 7).

Arriving
customers

Departing
customers

Checkout
queue

Cashier

Cashier

Fig. 2.16. A dual (m = 2) server queue

With two servers available to service customers, we can reasonably assume
that the average residence time will be reduced. The question is, by how

2.6 Unlimited Request (Open) Queues 77

much? Naively, you might expect that the residence time would be halved
because the server capacity has been doubled. Unfortunately, the queueing
behavior is more complex than that by virtue of how the waiting line forms.

Since the dual server has twice the uniserver capacity, it can support twice
the traffic intensity. Using the definition (2.45) we can write the general traffic
intensity as:

mρ = λS , (2.47)

where the factor of m here represents the number of fixed-capacity servers
rather than the number of queues. Only during those periods when all m
servers are busy, will the waiting line grow, but (2.47) guarantees stability ρ <
1. As you will see in Sect. 2.7.1, the qeueing behavior in the m-server case is
very subtle and unintuitive. Therefore, we set the stage for those developments
by presenting a heuristic analysis of queueing at a dual server.

Low Load Case

Consider firstly the case where the arrival rate is low. In this low traffic limit
as ρ → 0 there will be no queueing, so every arriving customer can expect to
find one or the other server available. This situation mimics the twin queues
of Sect. 2.6.4 but without the queues (in this low traffic limit). Therefore, we
assume that the dual server residence time can be approximated by the twin
queue residence time (2.42) with low traffic:

Rlow ≈ S

1 − (λ
2)S

. (2.48)

Using (2.47) to replace λS/2 with ρ, (2.48) becomes:

Rlow ≈ S

1 − ρ
. (2.49)

If ρ = 0 exactly then there are no customers in service and an average cus-
tomer arriving would incur an expected service time S. Of course, as the load
increases (ρ >> 0) two queues will begin to form and (2.49) will diverge from
the correct behavior because there is only a single waiting line, not two, at
the dual server in Fig. 2.16.

High Load Case

Next, we consider the other extreme where the arrival rate is high. In that
limit the traffic intensity 2ρ → 2, which means both servers will be very busy
(ρ → 1) and the waiting line will tend to be very long. This situation mimics a
single large waiting line but with a server that is twice as fast as the uniserver
queue discussed in Sect. 2.6.1 because there is twice the server capacity and
that makes it is possible to have two customers being serviced simultaneously.

78 2 Getting the Jump on Queueing

We assume that the dual server residence time can be approximated by the
uniserver residence time (2.35):

Rhigh ≈ S/2
1 − λ(S

2)
, (2.50)

but with S replaced by S/2 to represent a server that is operating twice as
fast. Using (2.47) to replace λS/2 with ρ, (2.50) becomes:

Rhigh ≈ S

2(1 − ρ)
. (2.51)

Since (2.51) is only an approximation, it will also diverge from the correct
behavior as the load decreases (ρ << 1). We need to find a representation of
the response time that contains both of these extreme queueing behaviors as
well as the correct intermediate behavior.

Intermediate Case

The only distinction between the approximations (2.49) and (2.51) is a factor
of 1

2 . This suggests that we write a generalized response time function:

Rφ =
Sφ(ρ)
1 − ρ

. (2.52)

where the numerator corresponds to a load-dependent pseudo-server which
has a variable mean service time Sφ(0) = S at low loads and Sφ(1) = S/2
at high loads. Various forms of a load-dependent servers are also presented in
Chaps. 6 and 10. The function φ(ρ) therefore needs to satisfy the conditions:

φ(ρ) =

⎧⎨
⎩

1 as ρ → ε,

1
2 as ρ → 1 − ε.

(2.53)

where ε is a vanishingly small quantity. A simple function of the server uti-
lization ρ which meets these requirements is:

φ(ρ) =
1

1 + ρ
. (2.54)

To check that (2.54) produces the correct limiting behavior in (2.52) at low
loads, we replace ρ by ε:

Rφ =
S

1 − ε

(
1

1 + ε

)
=

S

1 − ε2
= S , (2.55)

where terms that are O(ε2) can be disregarded. The average residence time
becomes the average service time, as expected. Similarly, at high loads:

2.7 Multiserver Queue 79

Rφ =
S

1 − (1 − ε)

(
1

1 + (1 − ε)

)
=

S

1 − (1 − ε)2
=

S

2ε
, (2.56)

which corresponds to a large number (ε−1) of enqueued customers, each re-
quiring an average service time of S/2. Equation (2.56) supports our earlier
assumption that a dual server acts like a double-speed uniserver at high loads.

The complete expression for intermediate dual server residence times is:

Rφ =
S

1 − ρ

(
1

1 + ρ

)
, (2.57)

which simplifies to:

R =
S

1 − ρ2
, (2.58)

the subscript φ now being redundant. As we shall confirm in Sect. 2.7.5, the
formula in (2.58) gives the average residence time at a dual server queue for
all loads ρ < 1, so our guess for φ(ρ) in (2.54) is justified.

The performance advantage of the dual server queue can be understood intuitively
as follows. It is a single waiting line feeding a pseudo-server which acts like a twin
queue center at low loads but progressively becomes a double-speed uniserver at
high loads.

The queue length can be obtained from Little’s law Q = λR applied to (2.58):

Q =
λS

1 − ρ2
=

2ρ

1 − ρ2
. (2.59)

where we have used (2.47) with m = 2. The waiting line length is:

L = Q − 2ρ =
2ρ3

1 − ρ2
, (2.60)

and the corresponding waiting time is given by:

W =
L

λ
=

ρ2S

1 − ρ2
, (2.61)

by virtue of Little’s law L = λW . The same heuristic reasoning can be applied
to develop an approximate formula for the multiserver response time.

2.7 Multiserver Queue

If we generalize (2.54) as:

φ(m, ρ) =
1 − ρ

1 − ρm
=

ρm−1

1 + ρ + ρ2 + . . . + ρm−1
, (2.62)

80 2 Getting the Jump on Queueing

for m servers, the corresponding residence time (2.52) becomes:

Rφ =
S

1 − ρm
, (2.63)

where ρ = λS/m. Unlike (2.58), however, (2.63) is only an approximation to
the exact result which we present in Sect. 2.7.1. Nonetheless, (2.63) is very
useful for fast manual calculations.

Table 2.4. Comparison of approximate and exact (italics) normalized multiproces-
sor response times (R/S) as a function of server utilization ρ and the number of
servers m

ρ
m 0.3333 0.5000 0.6666 0.7500 0.9000

1 1.4999 1.4999 2.0000 2.0000 2.9994 2.9994 4.0000 4.0000 10.000 10.0000
2 1.1250 1.1250 1.3333 1.3333 1.7997 1.7997 2.2857 2.2857 5.2632 5.2632
3 1.0384 1.0454 1.1429 1.1579 1.4209 1.4443 1.7297 1.7570 3.6900 3.7235
4 1.0125 1.0194 1.0667 1.0870 1.2460 1.2837 1.4629 1.5094 2.9078 2.9694
5 1.0041 1.0091 1.0323 1.0521 1.1516 1.1959 1.3111 1.3694 2.4419 2.5250
6 1.0014 1.0045 1.0159 1.0330 1.0962 1.1423 1.2165 1.2811 2.1342 2.2335
7 1.0005 1.0023 1.0079 1.0218 1.0621 1.1071 1.1540 1.2212 1.9168 2.0285
8 1.0002 1.0012 1.0039 1.0148 1.0406 1.0828 1.1113 1.1785 1.7558 1.8769

16 1.0000 1.0000 1.0000 1.0011 1.0015 1.0173 1.0101 1.0511 1.2274 1.3696
32 1.0000 1.0000 1.0000 1.0000 1.0000 1.0020 1.0001 1.0104 1.0356 1.1432
64 1.0000 1.0000 1.0000 1.0000 1.0000 1.0001 1.0000 1.0011 1.0012 1.0485

The normalized response times R/S predicted by (2.63) are shown in the
left hand columns of Table 2.4. Right hand columns (italics) show the exact
R/S values derived in Sect. 2.7.2. The selected set of utilizations and server
configurations corresponds to those found in many current commercial multi-
processors (cf. Chap. 7). A subset of four m values are plotted in Fig. 2.17.

The uppermost curve corresponds to the single server case shown pre-
viously in Fig. 2.12. As the number of servers is increased in the sequence
m = 1, 4, 16, 64, we see that the general trend is to push the knee of the curve
toward the lower right corner of the plot .

How accuate is the approximate expression (2.63) for estimating multi-
server residence times? To answer that question, we need to compare it with
the exact formula for multiserver residence times. That involves something
called the Erlang C function.

2.7.1 Erlang’s C Formula

The exact multiserver residence time can be calculated using the formula:

2.7 Multiserver Queue 81

0

2

4

6

8

10

12

14

16

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Utilization

N
or

m
al

iz
ed

 R
es

id
en

ce
 T

im
e

(R
/S

) M/M/1

M/M/4

M/M/16

M/M/64

Fig. 2.17. Normalized response times (R/S) for multiple servers m = 1, 4, 16, 64.
The upper curve corresponds to the single server case

R =
C(m, ρ)S
m(1 − ρ)

+ S , (2.64)

where the first term is the expected waiting time W . The corresponding queue
length (number of customers in the queueing center, including the ones in
service) is given by Little’s law Q = λR:

Q =
ρC(m, ρ)
m(1 − ρ)

+ mρ . (2.65)

C(m, ρ) is the probability that all the servers are busy and therefore cus-
tomers arriving with traffic intensity (2.47) will have to wait for service. This
probability is defined by the rather complicated function:

C(m, ρ) =
(mρ)m

m!

(1 − ρ)
∑m−1

n=0
(mρ)n

n!
+ (mρ)m

m!

, (2.66)

which is known as Erlang’s C function. Notice that if m = 1 then C(1, ρ) = ρ
(the probability that the single server is busy) so (2.64) reduces to the resi-
dence time (2.35) for a uniserver queue, and similarly the queue length (2.65)
reduces to (2.36).

82 2 Getting the Jump on Queueing

Historically, this is where it all started. A. K. Erlang [1917] developed this pioneer-
ing application of queueing theory to telephone systems. The m servers represent
telephone trunk lines accepting calls measured in Erlang units. The number of
Erlangs cannot exceed the number of servers. As noted in Appendix B, it was
another 50 years before queueing theory was applied to electronic computer per-
formance analysis.

Erlang’s influence lives on today. Equation (2.64) can be used to analyze the
response time characteristics of a customer support call center. A number of
assumptions must be made in that case. One assumption is that the a waiting
caller does not leave the queue (defect), another is that the pool of callers is
infinite. In practice this usually means that the number of callers is at least
10 times greater than the number of servers.

Ericsson, the Swedish cell phone company, developed a functional pro-
gramming language called Erlang (www.erlang.org/about.html) for build-
ing more reliable telecommunication systems.

2.7.2 Accuracy of the Heuristic Formula

As noted previously, (2.63) is only an approximation for multiserver response
time (2.64) but it is clearly more suitable for manual calculations. Another
approach is to find efficient algorithms to compute (2.64) exactly, and we take
up that idea in Sect. 2.7.4. With the Erlang C function defined, we can now
compare the relative accuracy of (2.63) and (2.64).

Table 2.4 contains the exact response times shown in italics. Note that
both the approximate and exact response times are identical for queueing
centers with one and two server. Deviations occur only for m > 2.

Overall, the approximate expression in (2.63) tends to underestimate the
exact response time (2.64). The relative errors are plotted in Fig. 2.18 for the
same range of server configurations (horizontal axis) as appear in Tables 2.4
and server utilizations ρ ≥ 0.50 (vertical axis).

The largest errors appear as the dark band toward the top of the figure.
The maximum error of 15% occurs in the neighborhood of m = 64 and ρ =
0.98. This error falls rapidly to about 5% for ρ > 0.98. For moderate loads
with server utilization in the range 0.50 < ρ < 0.65, the relative varies from
about 2.5% at m = 8 (gray region on the left side of Fig. 2.18) to about 0.5%
at m = 16 (white region).
Figure 2.18 can be used to visually determine whether or not you need to
resort to the exact formula (2.64) for multiserver response times. If the load is
very high (say, rho > 0.90) and the number of servers is large (say, m > 20),
then the approximate response time formula (2.63) will have about 10% error.
The question becomes, can you live with that error? On the other hand, any
m-way configuration running a load ρ that puts you in the white region of
Fig. 2.18 has relatively small error and using (2.63) is expeditious.

2.7 Multiserver Queue 83

0 10 20 30 40 50 60
0.5

0.6

0.7

0.8

0.9

1

Fig. 2.18. Relative error for the approximate solution in (2.63) plotted as a function
of server capacity m and load ρ. Server configurations span 1 ≤ m ≤ 64 processors
(horizontal axis) for utilizations in the range 0.5 ≤ ρ ≤ 1.0 (vertical axis). The
largest errors (about 10–15%) occur in the black band at top right. The least errors
(white) occur in narrow strips at the left, top, and the large quadrant at lower right,
as well as for all ρ < 0.5 (not shown)

2.7.3 Erlang’s B Formula

Whereas the Erlang C function pertains to an multiserver queueing system,
the Erlang B function,

B(m, ρ) =
(mρ)m

m!∑m
n=0

(mρ)n

n!

, (2.67)

gives the probability that all the servers are busy and that customers (or calls)
are dropped completely rather than being queued up. This is what happens
when you try to make a phone call and all the circuits are busy; you hang up
and try again later. In other words, there is no queueing. Formally, B(m, ρ)
is the probability that the call is dropped or lost. Equation (2.67) can be
rewritten as:

B(m, ρ) =
e−mρ (mρ)m

m!

e−mρ
∑m

n=0
(mρ)n

n!

≡ PDF
CDF

, (2.68)

to make explicit that it is the ratio of the discrete probability density func-
tion (PDF or more strictly the PMF) to the cumulative distribution function
(CDF) of a Poisson distribution (Sect. 1.5.3) with mean equal to the traffic
intensity mρ. The complement of B(m, ρ):

R(m, ρ) =
∑m−1

n=0
(mρ)m

m!∑m
n=0

(mρ)n

n!

≡ 1 − PDF
CDF

, (2.69)

84 2 Getting the Jump on Queueing

is called the Poisson ratio where the difference in the upper limits of the
summations should be carefully noted. We can use (2.69) to simplify the
notation for both Erlang’s B function (2.67):

B(m, ρ) = 1 − R(m, ρ) , (2.70)

and Erlang’s C function (2.66):

C(m, ρ) =
1 − R(m, ρ)

1 − ρR(m, ρ)
, (2.71)

from which it also follows that:

C(m, ρ) =
B(m, ρ)

1 − ρ [1 − B(m, ρ)]
. (2.72)

Equation (2.72) forms the basis of the iterative algorithms for solving multi-
server queues presented in Sect. 2.7.4.

Extending this approach enables us to see why the residence time in (2.63)
is only an appoximation for m > 2. Both of the Erlang functions are prob-
abilities that can be expressed in terms of the Poisson ratio (2.69). The de-
nominator of the pseudo-server function φ(m, ρ) in (2.62) is a finite geometric
series. The first two terms of the series were guessed in (2.54). This suggests
that we form a corresponding geometric ratio:

G(m, ρ) =
ρm−1∑m−1
n=0 ρn

≡ PDF
CDF

, (2.73)

which is bounded by 0 ≤ G ≤ 1. Equation (2.73) bears some similarity to the
Erlang’s B function (2.67). The relationship between (2.73) and the φ(m, ρ)
function is given by:

φ(m, ρ) = ρ1−m G(m, ρ) . (2.74)

The Erlang functions are associated with the Poisson distribution whereas the
approximate function φ(m, ρ) is associated with the geometric distribution.

2.7.4 Erlang Algorithms in Perl

As Allen [1990] noted, some people regard manual calculation of the Erlang
formulae (2.67) or (2.66) as an unnatural act! Consequently, considerable in-
dustry has been devoted to finding efficient algorithms for the computation
of these functions. Jagerman [1974] found that B(m, ρ) can be computed re-
cursively as:

B(m, ρ) =
ρB(m − 1, ρ)

1 + ρB(m − 1, ρ)
, (2.75)

which can be applied to calculate C(m, ρ) using (2.72). The following Perl
code erlang.pl employs the relations to calculate the normalized residence
time for an M/M/m queue:

2.7 Multiserver Queue 85

#! /usr/bin/perl

erlang.pl

Input parameters

$servers = 8;

$erlangs = 4;

if($erlangs > $servers) {

print "Error: Erlangs exceeds servers\n";

exit;

}

$rho = $erlangs / $servers;

$erlangB = $erlangs / (1 + $erlangs);

for ($m = 2; $m <= $servers; $m++) {

$eb = $erlangB;

$erlangB = $eb * $erlangs / ($m + ($eb * $erlangs));

}

$erlangC = $erlangB / (1 - $rho + ($rho * $erlangB));

$normdwtE = $erlangC / ($servers * (1 - $rho));

$normdrtE = 1 + $normdwtE; # Exact

$normdrtA = 1 / (1 - $rho**$servers); # Approx

Output results

printf("%2d-server Queue\n", $servers);

printf("--------------------------------\n");

printf("Offered load (Erlangs): %8.4f\n", $erlangs);

printf("Server utilization (rho): %8.4f\n", $rho);

printf("Erlang B (Loss prob): %8.4f\n", $erlangB);

printf("Erlang C (Waiting prob): %8.4f\n", $erlangC);

printf("Normalized Waiting Time: %8.4f\n", $normdwtE);

printf("Normalized Response Time: %8.4f\n", $normdrtE);

printf("Approximate Response Time: %8.4f\n", $normdrtA);

More recently, the widespread availability of symbolic computation tools like
Mathematica (Wolfram Research, USA) enable the modern performance an-
alyst to avoid “unnatural acts” by typing in a complicated formula, such as
(2.66), using conventional mathematical notation.

Let us use Mathematica to check the results produced by the iterative
algorithms in erlang.pl for the case where m = 8 and ρ = 0.5. Equation
(2.67) is expressed verbatim in Mathematica as a function called EB which
takes two parameters m and ρ as its arguments:

In[1] := EB[m , ρ] :=
(mρ)m

m!∑m

k=0
(mρ)k

k!

.

86 2 Getting the Jump on Queueing

The Mathematica function EB is then called by simply entering its name
with the specific values, m = 8 and ρ = 0.5 at In[2]. The corresponding out-
put Out[2] gives the numerical result:

In[2] := EB[8, 0.5]
Out[2] = 0.0304201

The corresponding output of erlang.pl is:

1 8-server Queue

2 --------------------------------

3 Offered load (Erlangs): 4.0000

4 Server utilization (rho): 0.5000

5 Erlang B (Loss prob): 0.0304

6 Erlang C (Waiting prob): 0.0590

7 Normalized Waiting Time: 0.0148

8 Normalized Response Time: 1.0148

9 Approximate Response Time: 1.0039

Comparing line 5 (the Erlang B function) with the corresponding Mathe-
matica value, we see that they agrees to four decimal places. Similarly, the
Mathematica expression for (2.66) is a function labeled EC :

In[1] := EC[m , ρ] :=
(mρ)m

m!

(1− ρ)
∑m−1

k=0
(mρ)k

k!
+ (mρ)m

m!

,

Applying EC with the particular arguments, m = 8 and ρ = 0.5, produces
the following numerical output:

In[2] := EC[8, 0.5]
Out[2] = 0.059044

We see that line 6 (the Erlang C function) is also in agreement with the
Mathematica calculation to four decimal places.

2.7.5 Dual Server Queue—Exact Analysis

We are now in a position to reexamine the dual server queue discussed in
Sect. 2.6.6 using the the Erlang B and C functions. For m = 2 the Poisson
ratio

R(2, ρ) =
1 + 2ρ

1 + 2ρ + 2ρ2
, (2.76)

2.7 Multiserver Queue 87

gives the corresponding Erlang B function (2.67)

B(2, ρ) =
2ρ2

1 + 2ρ + 2ρ2
. (2.77)

The Erlang C function (2.66) is simply

C(2, ρ) =
2ρ2

1 + ρ
. (2.78)

The reader will note the equivalence between the respective denominators
in (2.78) and (2.54), the pseudo-server function φ(ρ) defined in Sect. 2.6.6.
It is the numerator, however, that disguishes them. C(2, ρ) is a probability
function defined over the range 0 ≤ C(2, ρ) ≤ 1, while φ(ρ) is a decreasing
function of ρ defined in the range 1 ≤ φ(ρ) ≤ 1

2
. The dual server waiting time

can be expressed in terms of the Erlang C function (2.78):

W =
C(2, ρ) S

2(1 − ρ)
=

(
ρ2

1 − ρ2

)
S . (2.79)

From the definition of residence time (2.12) it follows that:

R = W + S =
S

1 − ρ2
, (2.80)

in agreement with our heuristic derivation of (2.58) in Sect. 2.6.6. The average
queue length is given by Little’s macroscopic law (2.14):

Q = λ R =
2ρ

1 − ρ2
, (2.81)

and the average length of the waiting line is:

L = Q − 2ρ =
2ρ3

1 − ρ2
, (2.82)

which can also be obtained from Little’s law L = λW .
These formulae are straightforward enough to manually check the results

produced by erlang.pl in Sect. 2.7.4. For arithmetic convenience, we choose
the values $servers = 2 and $erlangs = 1 for the variables so that the server
utilization is ρ = 1

2
. The program output is:

1 2-server Queue

2 --------------------------------

3 Offered load (Erlangs): 1.0000

4 Server utilization (rho): 0.5000

5 Erlang B (Loss prob): 0.2000

6 Erlang C (Waiting prob): 0.3333

7 Normalized Waiting Time: 0.3333

8 Normalized Response Time: 1.3333

9 Approximate Response Time: 1.3333

88 2 Getting the Jump on Queueing

Manually, we begin by calculating the Erlang B function (line 5):

B(2,
1
2
) =

1/2
5/2

=
1
5

, (2.83)

and substituting this result into (2.72) to evaluate the Erlang C function :

C(2,
1
2
) =

1/2
3/2

=
1
3

. (2.84)

which should be compared with line 6. Substituting C(2, 1
2) into (2.79) gives

the normalized waiting time (line 7):

W =
1/4
3/4

=
1
3

, (2.85)

and the corresponding normalized residence time (2.80) is:

R = 1 + 1/3 = 1
1
3

. (2.86)

which should be compared with line 8. Clearly, the manual calculations con-
firm the script output.

2.8 Limited Request (Closed) Queues

Another type of feedback occurs in queueing centers where the total number
of customers is finite and fixed. In contrast to the open queueing centers
discussed in Sect. 2.6, which have a potentially infinite source of customers,
these centers are known as closed centers.

2.8.1 Closed Queueing Center

The constraint on the number of customers is tantamount to a form of negative
feedback or self regulation. The finite population of N customers is either
preparing to join the queue (this is sometimes called the “thinking” state
with think-time denoted by Z) or they are already at a queueing center, either
enqueued or being serviced. Fig. 2.19 illustrates a closed queueing center.
The feedback property is easily understood as follows. If, during some period,
all N customers are at the service center, then there cannot be any new arrivals
at the service center. The system is maximally busy. In such circumstances
the response time will be at its worst. In general, as the service center gets
busy, the rate at which it gets busier is reduced, thus lowering any further
congestion at the service center.

As a consequence of this feedback, performance metrics, such as average
throughput and average response time, now become functions of the customer
population state, respectively X = X(n) and R = R(n), where n = 1, 2, ..., N .
We shall see in Chap. 3 that this kind of self-regulating queueing center is very
important for modeling certain aspects of computer system performance.

2.8 Limited Request (Closed) Queues 89

N, Z

S

R(N)

X(N)

Fig. 2.19. A closed queueing center containing a finite population of N customers
each with an infinite center think-time Z

2.8.2 Interactive Response Time Law

Just as we found formal expressions for the response times in open queueing
centers, we would like to do the same for the feedback center. Assuming the
simplest case of a uniserver (m = 1) center in Fig. 2.19, we can express the
throughput of the system as follows:

X(N) =
N − Q

Z
. (2.87)

This equation simply states that the throughput is a function of arrivals at the
center, which occurs at a rate equal to the inverse of the think-time moderated
by the number of outstanding requests already in the system (N − Q). Just
as for the restaurant example, we assume that there cannot be more than one
request outstanding. Using Little’s law Q = XR yet again, we can rewrite
(2.87) as:

Z X(N) = N − XR . (2.88)

Since we have X on both sides of this equation, we collect those terms. The
result is an expression of the throughput.

X(N) =
N

R + Z
. (2.89)

A final rearrangement of terms produces the response time for a closed unis-
erver center:

R =
N

X(N)
− Z, (2.90)

which is sometimes referred to as the Interactive Response Time law [La-
zowska et al. 1984, Jain 1990]. We note in passing that the throughput in
(2.87) is a performance measure that is an output of solving the model. This
is in contrast to all the previous queueing centers we have studied. There, the
throughput was assumed equivalent to the arrival rate and was provided as
an input performance measure (typically via the utilization ρ) to solve the
model.

90 2 Getting the Jump on Queueing

Example 2.13. A unix timeshare computer system used by software devel-
opers is monitored for performance and reveals the following measurement
data:

• average number of active user logins: N = 230
• average time between compilations: Z = 300 s
• average CPU utilization: ρcpu = 48% busy
• average CPU service demand: Dcpu = 0.63 s/compile

The system administrator wishes to address the following performance ques-
tions:

1. What is the CPU throughput for this development workload?
2. What is the average compilation time?

Applying Little’s microscopic law, given by (2.26), to the CPU,

X = ρcpu/Dcpu = 0.48/0.63 = 0.7636 compiles/s.

Applying (2.90), the system administrator discovers

R = 300 = 1.21 s

for the average compilation time. ��

2.8.3 Repairman Algorithm in Perl

Generalizing the above equations to a multiserver center complicates the exact
solution. The following Perl code is provided to aid in solving the general
repairman problem.

#! /usr/bin/perl

repair.pl

if ($#ARGV != 4) {

printf "Usage: repair m S N Z\n";

exit(1);

}

$m = $ARGV[0];

$S = $ARGV[1];

$N = $ARGV[2];

$Z = $ARGV[3];

$p = $p0 = 1;

$L = 0;

for ($k = 1; $k <= $N; $k++) {

$p *= ($N - $k + 1) * $S / $Z;

if ($k <= $m) {

$p /= $k;

} else {

2.8 Limited Request (Closed) Queues 91

$p /= $m;

}

$p0 += $p;

if ($k > $m) {

$L += $p * ($k - $m);

}

}

$p0 = 1.0 / $p0;

$L *= $p0;

$W = $L * ($S + $Z) / ($N - $L);

$R = $W + $S;

$X = $N / ($R + $Z);

$U = $X * $S;

$rho = $U / $m;

$Q = $X * $R;

printf("\n");

printf(" M/M/%ld/%ld/%ld Repair Model\n", $m, $N, $N);

printf(" ----------------------------\n");

printf(" Machine pop: %4d\n", $N);

printf(" MT to failure: %9.4f\n", $Z);

printf(" Service time: %9.4f\n", $S);

printf(" Breakage rate: %9.4f\n", 1 / $Z);

printf(" Service rate: %9.4f\n", 1 / $S);

printf(" Utilization: %9.4f\n", $U);

printf(" Per Server: %9.4f\n", $rho);

printf(" \n");

printf(" No. in system: %9.4f\n", $Q);

printf(" No in service: %9.4f\n", $U);

printf(" No. enqueued: %9.4f\n", $Q - $U);

printf(" Waiting time: %9.4f\n", $R - $S);

printf(" Throughput: %9.4f\n", $X);

printf(" Response time: %9.4f\n", $R);

printf(" Normalized RT: %9.4f\n", $R / $S);

printf(" \n");

Example 2.14. Suppose the unix computer in Example 2.13 is being consid-
ered for upgrading to a two-way multiprocessor system because another 200
programmers have just been hired due the company winning a new devel-
opment contract. What will be the impact on the current system with 430
programmers?

Using the repair.pl program we find ρcpu = 88%, and R = 5.009 s. The
CPU becomes saturated, and compilations can be expected to take five times
longer.

Consider an upgrade to a two-way multiprocessor. As Allen [1990] has
pointed out, processor interference effects require that service time be inflated
to reflect CPU cycles lost to overhead. In Chap. 7 we shall see that a reasonable

92 2 Getting the Jump on Queueing

choice for such processor interference is around 3% of each CPU. Therefore,
we set S = 0.66 s and run repair.pl again. CPU utilization falls to 47%, and
R = 0.8465 s, which is better than the current compilation time. ��

As we shall see in Chap. 3, a closed queueing center is the simplest exam-
ple of what is often termed a queueing network in that it involves a flow of
customers through more than one kind of center: the queueing center and an
infinite server (i.e., no queueing). Since the term network has more in common
with electrical networks than with communication networks, we prefer to use
the term queueing circuit to avoid such confusion.

2.8.4 Response Time Characteristic

The interactive response time law (2.90) has the general characteristic shown
in Fig. 2.20. It is a convex function. In fact, note that it has a hockey stick
shape compared with that for an open-queue response time characteristic.
Note that the load (horizontal axis) in Fig. 2.20 is defined here in terms of
the number of active users N , and not the utilization ρ as in Fig. 2.12.

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

User Load (N)

S
ys

te
m

 R
es

po
ns

e
Ti

m
e

–
R

(N
)

Fig. 2.20. Convex response time characteristic of a finite request queue

The terms convex and concave have particular mathematical definitions. Es-
sentially, a convex function is bowl � shaped, which means its gradient ap-
pears to rotate in an anti-clockwise direction as we move from left to right
along the response time curve. An important consequence is that a knee de-
velops in the curve and that knee is associated with the optimal load point
(see Chap. 5).

2.8 Limited Request (Closed) Queues 93

Conversely, a concave function is bump � shaped. Therefore, the gradi-
ent appears to rotate in a clockwise direction for a concave function. These
mathematical definitions are in contradistinction to the same terms applied
to the shape of lenses (which may be more familiar to you). A convex lens �
is bow shaped, while a concave lens � caves in, not out! In Sect. 2.8.5 you
will see that the throughput characteristic for a closed queue (Fig. 2.19) is a
concave function.

2.8.5 Throughput Characteristic

The corresponding interactive throughput (2.89) has the general characteristic
shown in Fig. 2.21. As defined in Sect. 2.8.4, the throughput characteristic for
a closed queue (Fig. 2.19) with a finite number of customers is a concave
function.

0.00

0.50

1.00

1.50

2.00

2.50

0 5 10 15 20 25 30 35 40 45 50

User Load (N)

S
ys

te
m

 T
hr

ou
gh

pu
t –

 X
(N

)

Fig. 2.21. Concave throughput characteristic of a finite request queue

Figures 2.20 and 2.21 are fundamental performance signatures that you should
study carefully and learn to recognize instantly. They occur very frequently, par-
ticularly in benchmarking measurements because the number of active requests
is limited to the number of active workload generators. Throughput or response
time data from such load-limited systems that do not conform to these signatures
should be treated with immediate suspicion; the data is bound to be wrong!

94 2 Getting the Jump on Queueing

Although we did not show it earlier, the corresponding throughput charac-
teristic for an open queue simply tracks the server utilization ρ. This follows
immediately from Little’s law (2.15) with λ replaced by X. Therefore, instead
of having a rounded knee like that shown in Fig. 2.21, the throughput is a
straight line segment rising up to a sharp knee where the server becomes 100%
busy, ρ = 1.

0

2

4

6

8

10

12

14

16

0.00 0.50 1.00 1.50 2.00 2.50

System Throughput - X(N)

R
es

po
ns

e
Ti

m
e

-
R

(N
)

Fig. 2.22. Combined throughput-delay (X-R) curve

Some authors [e.g., Splaine and Jaskiel 2001, p. 241] combine the throughput
and response time data together in the same X versus R plot (Fig. 2.22).
These throughput-delay plots also have a convex shape. This type of represen-
tation may be compact but it also can be misleading because it resembles the
response time in Fig. 2.17 for an unlimited request queue. This can act as a
visual miscue. Moreover, it is not very useful from the standpoint of assessing
performance bounds and optimal loads—topics we discuss in Chap. 5.

2.8.6 Finite Response Times

Unlike the open queueing centers we discussed previously, the finite popu-
lation in closed queueing centers means that there is a worst-case response
time rather than an infinite response time at 100% utilization. Denoting this
maximum in the normalized response time as Rmax = R/S, we see that the
worst-case (Z = 0) response time is given by:

Rmax =
N

m
. (2.91)

2.8 Limited Request (Closed) Queues 95

This result can be easily understood in the followingway. For a closed queueing
center we have the Response Time Law given by (2.90). Normalizing by the
service time S produces:

R

S
=

N

XS
− Z

S
. (2.92)

Noting that ρ = XS, from Little’s law (2.15), we can rewrite (2.92) as:

R

S
=

N

ρ
− Z

S
. (2.93)

Substituting ρm into (2.93) produces:

R

S
=

N

ρm
− Z

S
, (2.94)

which is the corresponding response time law for a closed multiserver center.
Setting the think-time to Z = 0 and ρ = 1 corresponds to the worst-case
response time Rmax of (2.91).

R

S
=

N

m
. (2.95)

Some example results generated using the repair.pl code in Sect. 2.8.3 are
collected in Table 2.5.

Table 2.5. Finite response time limit for N = 64

m
Z 1 4 8 16

1.0000 63.0000 15.0000 7.0000 3.0000
0.1000 63.9000 15.9000 7.9000 3.9000
0.0100 63.9900 15.9900 7.9900 3.9900
0.0010 63.9990 15.9990 7.9990 3.9990
0.0001 63.9999 15.9999 7.9999 3.9999

For the repairmen system with m > 1, Rmax increases with N . For a fixed
number of m servers and small N , the repairmen system, with its feedback
property, has better response times than the open center. Increasing the num-
ber of servers m in an open center produces a better response up to moderate
loads. Under conditions of heavy traffic, the queue length in the open center
grows rapidly, whereas a closed center terminates at Rmax.

2.8.7 Approximating a Closed Queues

If we allow the size of the finite population N in a finite request queueing cen-
ter to grow indefinitely, it will begin to approach an infinite source of requests,

96 2 Getting the Jump on Queueing

and its characteristics should therefore approach those of an open queueing
center. Since the latter queue is generally easier to apply, it could be useful
to know under what circumstances we can replace closed queueing centers by
open centers. The following rule of thumb is useful:

An open queueing model is a reasonably accurate approximation to a closed
queueing model if N is at least ten times larger than the number of requests Qw

waiting for service, i.e., N ≥ 10 × Qw.

We can use our previous equations for an multiserver queue to render this rule
of thumb into a quantitative criterion. We want to calculate an upper bound
on the load beyond which the open approximation is not valid.

The rule of thumb states that Qw ≤ N/10. This condition may be observed
on a real computer system, e.g., the run-queue load average in a unix system
(Chap. 4). The number of requests waiting in line is Qw = Q − ρ, i.e., the
difference between the number of requests in the system and the number of
requests in service. For an multiserver queue, the number of requests in the
system is given by (2.65). The number of requests in service is mρ. Hence, an
approximation to the number of requests waiting in line is:

Qw � mρ

1 − ρm
− mρ . (2.96)

We want to determine the value of ρ that satisfies the condition Qw ≤ 0.10N .
This can be accomplished more easily by first rearranging (2.96) so that it
reads:

Qw − Qw ρm − mρm+1 = 0 , (2.97)

which can be solved using any root-finder program such as that available in
Mathematica and similar tools.
For the repairman queue with a finite population of N = 10, the rule of
thumb tells us the bound on the number of requests waiting in line is Qw ≤ 1.
The corresponding bound on the server load will differ depending how many
servers are available. We can determine that load by solving (2.97).

Example 2.15. Consider the simplest case of an uniserver queue which we ren-
der (2.97) in the following Mathematica program:

In[1] := (∗ Solve for the utilizations ∗)
Nsys = 22.5;
m = 1;
Qw = N[Nsys/10];
busy = Solve[Qw− Qwρm − mρ1+m == 0, ρ];
TableForm[busy]

Out [1] =
ρ → −3.
ρ → 0.75

2.8 Limited Request (Closed) Queues 97

The first set of results labeled Out[1], show that the server load ρ has two
possible values: ρ = −3.0 and ρ = 0.75. This follows from the fact that m = 1
and therefore m + 1 = 2, corresponding to a second degree equation. Hence,
there are two solutions but we are only interested in the one with a positive
value viz, ρ = 0.75.

In[2] := (∗ Solve for the queue lengths ∗)
β = Select[ρ /. busy, Positive];
β = First[β];
Q = Qw + mβ;
{Qw, Q, β}

Out [2] = {2.25, 3., 0.75}

The list of results labeled Out[2] summarizes the values for queue lengths Qw,
Q, and ρ, respectively. We see that the total queue length is Q = 3.0, as
expected for an M/M/1 queue with the server running at 75% busy. ��

In the next example, we examine how things change when we add another
server while keeping the number of finite requests the same.

Example 2.16. For a dual-server queue with Nsys = 22.5 we find:

In[3] := Nsys = 22.5;
m = 2;
. . .

Out[3] =
ρ → −0.947707− 0.749737 I
ρ → −0.947707+ 0.749737 I
ρ → 0.770414

Out[4] = {2.25, 3.79083,0.770414}
Since m + 1 = 3, we now have three possible roots, of which two are complex
numbers and one is positive-valued. Moreover, the waiting line is kept at the
same length but there are more requests in service, making Q larger. We note
also that the two servers are busier. ��
Finally, we add two more servers in the next example.

Example 2.17. For an M/M/4 queue we find:

In[5] := Nsys = 22.5;
m = 4;
Qw = N[Nsys/10];
busy = Solve[Qw− Qwρm − mρ1+m == 0, ρ];
TableForm[busy]

98 2 Getting the Jump on Queueing

Out[5] =
ρ → −0.858095− 0.498703 I
ρ → −0.858095+ 0.498703 I
ρ → 0.176156− 0.825562 I
ρ → 0.176156+ 0.825562 I
ρ → 0.801377

Out[6] = {2.25, 5.45551, 0.801377}

Since m + 1 = 5, we now have five possible roots, of which four are complex
numbers (denoted by the I term above) and one is positive-valued. The four
servers are now running at about 80% busy. ��

It will be useful to prepare the way for the client/server model discussed in
Chap. 9 by verifying that the open queue approximation can be applied to that
problem. We shall see that although there are a finite number of requesters
in that system (closed circuit), we can model it as an open queueing circuit.
We use (2.97) to examine the assumption.

Example 2.18. The baseline client/server architecture has N = 100 client ter-
minals or benchmark drivers.

In[7] := Nsys = 100;
m = 1;
. . .

Out[7] =
ρ → −10.9161
ρ → 0.91608

Out[8] = {10., 10.9161,0.91608}
This shows that an open queueing circuit approximation is justified as long
as the queue length on any PDQ node does not exceed Q = 10.92 with the
server no more than ρ = 0.92 busy. ��
As we shall see in the baseline client/server model, all PDQ queueing nodes
are less than 15% busy.

Example 2.19. The production client/server environment must support N =
1, 500 users.

In[9] := Nsys = 1500;
m = 1;
. . .

Out[9] =
ρ → −150.993
ρ → 0.993421

Out[10] = {150., 150.993,0.993421}
An open queueing model is justified as long as the total queue length is such
that Q < 151 with the server load at ρ < 0.99. ��

2.9 Shorthand for Queues 99

In the production client/server model, all PDQ queueing nodes are less than
85% busy. Indeed, we shall see that these conditions are fulfilled, and therefore
an open PDQ circuit is a valid approximation for that situation.

2.9 Shorthand for Queues

We now introduce some general terminology and schematic symbols that are
common currency among queueing theorists and will also be used throughout
the remainder of this book.

2.9.1 Queue Schematics

As described in the preceding section, a queueing center comprises a server
and a collection of requests that arrive, queue for service, and then depart.
This is depicted schematically in Fig. 2.23. Throughout this book, we simplify
Fig. 2.23 further by dropping any explicit depiction of arrivals and departures,
resulting in Fig. 2.24. When we use the word queue we shall mean the complete
center comprising the waiting requests and the server or service center. Hence,
the term queue length shall mean the number of waiting requests and the
one already in service. We follow Lazowska et al. [1984] in the use of this
terminology.

Fig. 2.23. Schematic representation of a customer or request arriving (from the
left) into a line of customers waiting to be served. A customer that has received
service is shown departing the server to the right

Fig. 2.24. The symbolic representation of a FIFO queueing server used throughout
this book

Requests appear as tokens in Fig. 2.24, which are shown as boxes when en-
queued. It is important to keep in mind that these schematic representations
should not be taken too literally. They are static representations of a dy-
namic situation in which the queue size is fluctuating in some random way as
requests arrive, are serviced, and depart from the center.

100 2 Getting the Jump on Queueing

A queue can also be thought of as behaving like a linked list where items are
added at one end, and removed at the other. In the context of Perl, a queue is
like an array variable [Schwartz and Phoenix 2001]. If @que is such a variable, then
arrivals in Fig. 2.24 correspond to unshift(@que) and departures to pop(@que).
In fact, these routines could form the basis of a queueing simulator.

Most queueing servers, like that in Fig. 2.24, service requests in first-in-first-
out (FIFO) or first-come-first-served (FCFS) order. Another possible service
discipline, which occurs in computer memory stacks, for example, is called last-
in-first-out (LIFO) or last-come-first-served (LCFS) order. The LIFO queue
shown in Fig. 2.25 can be thought of quite literally stacking up requests like
a dish dispenser in a cafeteria.

Fig. 2.25. Last-in-first-out (LIFO) queueing discipline

For the Perl queue @que, LIFO arrivals would correspond to push(@que) and
departures to pop(@que).

2.9.2 Kendall Notation

A commonly used shorthand notation for queues is due to Kendall [1951].
A queueing center (the waiting line together with the server) is classified
according to a generic descriptor:

Pa/Ps/m/B/N/Q ,

whose form resembles unix directory notation but does not refer to a tree
structure. The first symbol refers to the distribution of interarrival time peri-
ods, the second to the distribution of service periods, and so on. A complete de-
scription appears in Table 2.6. The Kendall descriptor M/G/4/50/2000/LIFO,
for example, represents a queueing center with the following characteristics:

• The period Pa between successive arrivals into the queueing center is ex-
ponentially distributed or Markovian [Bloch et al. 1998]. See Sect. 2.11.2.

• The period Ps required to service each request is distributed in some gen-
eral way. At least the mean and the standard deviation are usually known.
See Sects. 2.11.9 and 2.11.10.

• The queue is serviced by m = 4 servers.

2.10 Comparative Performance 101

Table 2.6. Kendall queueing notation

Symbol Meaning

PA Type of probability distribution that represents the periods be-
tween arrivals into the queueing center (e.g., deterministic (D),
memoryless (M) or exponential, general (G))

PS Type of probability distribution that represents the periods re-
quired to service each request in the queueing center (e.g., M,
D, G)

m Number of servers at the queueing center
B Buffer size or maximum length of the waiting line
N Allowed population size, which may be either limited (finite) or

unlimited (∞)
D Type of service scheduling discipline (e.g., FIFO, LIFO)

• The queueing center can only buffer B = 50 requests comprised of 4 in
service at each of the servers and 46 enqueued. Once the buffer is full,
any additional requests overflow the system and are lost until the queue
shrinks.

• The source of requests contains capacity for N = 2, 000 requests.
• The scheduling discipline D is last-in-first-out.

A more typical example of a queueing center that arises in computer systems
has the formal Kendall descriptor: M/M/m/∞/∞/FIFO. This symbol de-
notes an m-server queueing center with Markovian arrivals and exponentially
distributed service times. The waiting line has unlimited buffering, the source
of requests is infinite, and the service policy is FIFO. By convention, if ei-
ther of B or N are unconstrained (i.e., infinite) and the queueing discipline is
FIFO, those parts of the descriptor are suppressed and the reduced notation
becomes simply M/M/m. In other words, it is the Kendall descriptor for the
multiserver queue discussed in Sects. 2.7 and 2.7.1.

An M/M/m queueing center can be used to make a very simple represen-
tation of a multiprocessor computer where the servers represent CPUs and the
queue represents the process run-queue. More sophisticated models of multi-
processors can be constructed using an M/M/m//N queue, and we consider
that application in Chaps. 4 and 7.

There is no Kendall notation for parallel queues because they are mathe-
matically equivalent to a set of M/M/1 queues. We could use q(M/M/1) but
this is not conventional Kendall notation.

2.10 Comparative Performance

We introduced queueing concepts for analyzing the performance of a grocery
store in Sect. 2.3, and the post office in Sect. 2.3.3. We are now in a posi-
tion to apply those queueing representations to dispassionately address the

102 2 Getting the Jump on Queueing

earlier question about the relative merits of those service architectures. Ex-
panding the question slightly, and employing the Kendall shorthand for queues
(Sect. 2.9.2), we shall compare:

1. Boarding an aircraft represented by a highly efficient M/M/1 queue.
2. The post office represented by an M/M/m queue with m-servers.
3. The grocery store represented by a set of q parallel queues.

To make the comparison fare, we suppose that the number of service resources
is equivalent, i.e., q = m, and therefore that the single-file M/M/1 queue has
a server that is m times faster than the servers at the M/M/m queue.

This type of performance comparison appears in different guises, some-
times even confounding performance experts. For example, a system architect
might be confronted by such a comparison when choosing between a multi-
processor or a cluster platform to deploy an application (Chap. 7).

To keep the analysis simple, let us choose q = m = 2 (as we did in
Sect. 2.6.6) and therefore the uniprocessor should have a service rate that is
twice that of the other configurations. The performance metric of interest here
is the response time R. Recasting the original question, we now have:

1. An M/M/1 queue (Fig. 2.24) with response time defined by (2.35) to
represent aircraft boarding.

2. An M/M/2 queue (Fig. 2.14) with 2 servers and response time defined by
(2.63) to represent the post office.

3. A multiqueue (Fig. 2.16) comprising q = 2 queues and response time
defined by (Fig. 2.44) to represent the grocery store.

Figure 2.26 shows the result of using the respective equations to calculate the
response times for these three queues.

2.10.1 Multiserver Versus Uniserver

At light loads (ρ � 1) there is little queueing, so the service time dominates
the contribution to the response time in both cases. The service time at the
uniserver is shorter by a factor of two, relative to the dual server (Fig. 2.27),
so the uniserver also has the shorter response time. This performance ad-
vantage is diminished under heavy loads, however, since queueing begins to
dominate the response time characteristic. Hence, these two curves become
indistinguishable as they approach saturation (ρ → 1). We already saw this
effect in Sect. 2.6.6.

2.10.2 Multiqueue Versus Multiserver

The relative response time of the multiqueue is denoted by 2(M/M/1) in
(Fig. 2.27). As before, under light loads (ρ � 1) there is very little queueing
and the performance is determined by the respective service times. Both the
dual queue and the dual server have servers that operate at the same rate

2.10 Comparative Performance 103

0

2

4

6

8

10

12

14

16

0.00 0.25 0.50 0.75 1.00

Per Server Load ()

N
or

m
al

iz
ed

 R
es

id
en

ce
 T

im
e

(R
/S

)

M/M/1

M/M/2

2(M/M/1)

Fig. 2.26. Comparison of normalized response times R/S determined by three
kinds of queueing delays: uniserver M/M/1, multiserver M/M/2, and multiqueue
2(M/M/2)

(under our earlier assumption) so the response times are essentially identical
because both service times are equal.

Under heavy loads the response time is dominated by the waiting time.
Customers arriving at the dual queue 2(M/M/1), however, suffer a distinct
disadvantage compared to those in the dual-server M/M/2 queue. Refering
to Fig. 2.44, we see that a customer must decide which of the two queues to
join. We assume there is a 50-50 chance of joining one or other of the two
queues. Once they join a queue they are essentially waiting in an M/M/1
queue, but with a server that is twice as slow as the fast M/M/1 uniserver
representing aircraft boarding. Obviously, they are worse off than if they were
being serviced by the fast uniserver.

Customers waiting in the M/M/2 queue have twice the capacity servicing
the single line. Even though the server operates at the same rate as a server
in the dual queue, the customer at the head of the waiting line gets the next
available server. Recall that we are looking at this from the standpoint of
average service times. In reality, individual service times will deviate about
the average time. Consider the case when the customer ahead of you has a
significantly larger service time than the average. If you are waiting in one of
the dual server queues, you must wait for that customer to complete before
you can get served. Alternatively, if you are waiting in the dual server queue,

104 2 Getting the Jump on Queueing

0.00

0.50

1.00

1.50

2.00

2.50

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

Per Server Load ()

N
or

m
al

iz
ed

 R
es

id
ec

e
Ti

m
e

(R
/S

) M/M/1

M/M/2

2(M/M/1)

Fig. 2.27. Comparison of response times under light traffic shows that the multi-
server and the multiqueue are initially less distinguishable than the uniserver (cf.
Fig. 2.28)

you will be served as soon as the other server becomes available. Hence, the
dual server outperforms the dual queue at moderate to heavy loads. This
conclusion is also consistent with Sect. 2.6.6.

2.10.3 The Envelope Please!

Under the assumptions in this analysis, the best performance belongs to air-
craft boarding while the the worst performer is the grocery store. Expressed
in computer architecture terms, the worst performer is a cluster! As if to add
insult to injury, the best performer is the fastest available uniprocessor. This
is the same conclusion reached by Gene Amdahl [1967] in Sect. 8.3.2.

Unfortunately, acquiring the fastest uniprocessor is not always an option
because it may be too expensive (as it used to be for mainframes). A more
viable economic solution is to use a multiserver queue. This another the rea-
son for the popularity of symmetric multiprocessor computers, discussed in
Chap. 7. If a multiserver is generally to be preferred over the multiqueue, why
does the post office seem to have so much worse performance than the gro-
cery store? Remembering that it is easy to get perceptions confused with facts,
here is a plausible explanation. The average service time in either place is very
similar. In the grocery store, each customer generally has more items than a
typical customer in the post office. However, the post office employees tend

2.11 Generalized Servers 105

0

2

4

6

8

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

Per Server Load ()

N
or

m
al

iz
ed

 R
es

id
en

ce
 T

im
e

(R
/S

M/M/1

M/M/2

2(M/M/1)

Fig. 2.28. Comparison of response times in the heavy traffic region where the
multiserver and the uniserver become indistinguishable

to go through more tedious motions per item (including sometimes leaving
their station for mysterious reasons). Assuming approximately similar ser-
vice times, the post office usually only has three stations open simultaneously
while the grocery store can incrementally open up to around ten checkouts.
The grocery store has more capacity under heavy traffic. If the grocery store
were restricted to opening only three checkouts, then standing in line at the
post office might seem like a pleasure!

2.11 Generalized Servers

In our discussion so far, we have assumed that both arrivals and departures
occur during intervals that are distributed exponentially in time, i.e., interac-
tions with the queueing center follow a Poisson or memoryless process (Ap-
pendix C). This assumption, although important because of its widespread
applicability for computer performance analysis, is not always valid.

For example, the service time distribution for accessing a local area net-
work can depend on packet size and the existing traffic on the network. There
may be significant correlations between data that has just been packetized
and the remaining data that is yet to be packetized. Such correlations can
induce a high degree of variance in the measured service periods. At dow-
stream network devices, measurements of Internet traffic indicate that packet

106 2 Getting the Jump on Queueing

arrivals are not always Poisson but arise from a self-similar or fractal-type
process (see, e.g., Park and Willinger [2000]). Provided we are only consid-
ering performance at the connection or transaction level we will not have be
concerned about self-similarity, but we should be prepared to accommodate
significan variance effects in our analysis.

A useful statistical measure of dispersion about the mean service period
E(S) is the squared coefficient of variation or SCOV:

C2
S =

σ2
S

S2
≡ V ar(S)

E2(S)
, (2.98)

where the variance:
V ar(S) = E(S2) − E2(S) , (2.99)

is defined as in terms of E(S2), the second moment of the service time distri-
bution.

2.11.1 Infinite Capacity (IS) Server

Another type of service center that is useful for computer performance models
is represented in Fig. 2.29. Here a request is serviced immediately, without
having to wait in a queue at all. In queueing parlance, this is tantamount
to having a server available, no matter how many requests there may be
to service. For this reason it is sometimes called an infinite capacity service
center, which is commonly abbreviated to infinite server or simply IS.

The most common application of an IS is in a closed queueing system where
there is a finite number of requests and the service time at the IS corresponds
to a delay period. Since the IS has historically represented users at their
terminals [Scherr 1967], this delay is called the think time. If the number

Fig. 2.29. A delay center or infinite server with no queues

of servers is finite then a queue will form when all the available servers are
occupied. Such a multiserver queueing center is depicted in Fig. 2.30.

With these schematic conventions in place, we can now proceed to char-
acterize queueing servers in more detail. Because queues exhibit different per-
formance characteristics depending on the nature of the arrival and service
processes, it is useful to employ a compact notation to denote which pro-
cesses are being assumed. To analyze a queueing center we need to specify the
following characteristics:

2.11 Generalized Servers 107

Fig. 2.30. A single queue with multiple servers

• the probability distribution of the periods between arrivals into the queue-
ing center

• the probability distribution of the service periods for each request in the
queueing center

• number of servers at the queueing center
• buffer size or storage capacity at the queueing center
• the total number of requests that can be present at the queueing center
• the type of service policy

Some of the more common time distributions used to model arrival or service
periods are presented briefly in the following sections.

2.11.2 Exponential (M) Server

For an exponential server the service time follows the exponential distribution
discussed in Chap. 1. The exponential distribution is a continuous function.

For the arrivals process it means that the period between the last arrival
and the next is completely independent of the previous arrival period. Sim-
ilarly, for service periods. Since the periods are not correlated in time, the
corresponding processes are sometimes said to be memoryless or Markovian
(See Appendix C). The number of arrivals in any period follow a Poisson
distribution. Consequently, arrivals that are completely random belong to a
Poisson process. The mean and the standard deviation of the service times
are identical for the exponential distribution or equivalently:

E(S) = S , V ar(S) = S2 . (2.100)

and therefore it has unit coefficient of variation (2.98):

CS = 1 . (2.101)

The exponential density function with mean S = 1 in Fig. 1.3, demonstrates
that most periods are short compared with the average whereas only a few
periods tend to be longer than the average or 90% < 2.3S, 63% < S. Since
computer systems often exhibit completely random behavior, the exponential
distribution is surprisingly ubiquitous in queueing models.

108 2 Getting the Jump on Queueing

2.11.3 Deterministic (D) Server

The current service period is identical to the previous service period, there-
fore all periods are constant with no statistical variation between them. The
expected service time is therefore:

E(S) = const.

So, the mean service time is equal to all the service periods, and the SCOV
(2.98) is zero. In contrast to the M/M/1 residence time (2.35), the M/D/1
residence time is:

R =
ρS

2(1 − ρ)
+ S . (2.102)

The difference is that the waiting time is halved. Applying Little’s law Q = λR
to (2.102), we can write the M/D/1 queue length in terms of the M/M/1
queue length as:

QM/D/1 =
(

ρ

1 − ρ

)(
1 − 1

2
ρ

)
≡ QM/M/1

(
1 − 1

2
ρ

)
. (2.103)

If the interarrival periods are also deterministic (D), the queue becomes
D/D/1, and there is actually no queueing at all until ρ = 1. A simple example
of this phenomenon is a manufacturing conveyor belt that feeds boxes into a
shrink-wrapping station. All the boxes are spaced out evenly so their arrival at
the shrink-wrapper is deterministic (the first D), and the shrink-wrap process
takes the same deterministic time (the second D) for each box. Boxes can
never pile up unless the spacing becomes boxes becomes zero (ρ = 1).

2.11.4 Uniform (U) Server

In a uniform server the service period is bounded by some finite interval. If
If the service time has a continuous distribution and is uniformly distributed
on the interval from a to b, the mean and variance of the service time are:

E(S) =
a + b

2
, V ar(S) =

(b − a)2

12
. (2.104)

The queueing characteristic lies between that of the deterministic and expo-
nential distributions.

2.11.5 Erlang-k (Ek) Server

The Erlang-k server is sometimes employed as an artifact for generaliz-
ing the continuous exponential distribution while maintaining mathemati-
cal tractability. The service center is represented by series of k delay stages
(Fig. 2.31), each having service periods which are exponentially distributed

2.11 Generalized Servers 109

Fig. 2.31. Erlang server with k stages

with the same average S. There is no queueing at any of the internal stages
because the next request cannot start service until the previous request has
completed all k stages. The service time distribution for such a service center
is said to be Erlang-k.

E(S) = S , V ar(S) =
S2

k
. (2.105)

The coefficient of variation (2.98) is therefore:

CS =
1√
k

. (2.106)

Mathematically, the Erlang-k distribution is a special case of the gamma dis-
tribution discussed in Chap. 1.

2.11.6 Hypoexponential (Hypo–k) Server

A variant of the staged server like the Erlang-k server, but with each service
stage having a different mean service period. The hypoexponential distribution
has less variability than the exponential distribution, hence its name.

Hypoexponential distribution CS < 1. Most periods are close to the aver-
age, C = 1

2
implies 90% < 2.0S, only 57% < S.

2.11.7 Hyperexponential (Hk) Server

This is another variant on a staged server which is in some sense the dual
of the Erlang-k model. A hyperexponential distribution has more variability
than the exponential distribution.

It can be represented by a number exponential servers different mean ser-
vice times arranged in parallel. The simplest model has two parallel stages in
the service center (Fig. 2.32). Suppose the upper stage has mean exponential
service time S1 and the lower stage has exponential service time S2. A cus-
tomer entering the service center chooses the upper stage with probability α1

or the lower stage with probability α2, where α1+α2 = 1. After being serviced
the selected stage, the customer exists the service center. The next customer
is not permitted to enter the service center until the original customer has
completed service. The expected service time in the service center is:

E(S) = α1S1 + α2S2 . (2.107)

110 2 Getting the Jump on Queueing

Fig. 2.32. Hyperexponential server

and the variance is:

V ar(S) = 2α1S1 + 2α2S2 − (α1S1 + α2S2)2 . (2.108)

The SCOV for the Hyperexponential distribution CS > 1, so most periods are
further from mean than for the exponential distribution. For example C = 2.0
implies 90% < 2.8S, and 69% < S.

2.11.8 Coxian (Cox–k) Server

The Coxian distribution is another type of staged server (Fig. 2.33) with
staged exponentially distributed service times Si for i = 1,2, . . . , k stages,
and probability

Ai =
k−1∏
i=0

ai , (2.109)

of advancing to the ith server and branching probability bi of exiting after
the ith server. The next request cannot enter the service center until the
current request has either completed all stages or exited after the ith stage.
Consequently, there is no queueing inside the composite service center.

Fig. 2.33. Coxian server

The expected service time in the service center is:

E(S) =
k∑

i=1

Aibi

⎛
⎝ i∏

j=1

Sj

⎞
⎠ (2.110)

and the variance is:

2.11 Generalized Servers 111

V ar(S) = E(S2) − E2(S) (2.111)

where E(S2) is given by:

E(S2) =
k∑

i=1

Aibi

⎡
⎢⎣
⎛
⎝ i∏

j=1

S2
j

⎞
⎠ +

⎛
⎝ i∏

j=1

Sj

⎞
⎠2

⎤
⎥⎦ (2.112)

2.11.9 General (G) Server

The period for a general server is not characterized by any single probabil-
ity distribution because the corresponding process is completely arbitrary. A
typical example is a process that generates a bimodal distribution of time
periods. For example, in a token ring network there is one distribution for the
time to pass a token between nodes and another distribution that describes
the period for which a token is held by a node on the network.

Properties of these service time distributions are listed in Table 2.6. In the
case of network packetization one might prefer to model the service time dis-
tribution as an M/G/1 queueing center. In another situation one might want
to model best-case performance using constant service time, i.e., an M/D/1
queueing center. How are these different queueing types related to our previ-
ous discussion? PDQ assumes that all queueing centers are Markovian, but
residual service times can be incorporated using the techniques of Lazowska
et al. [1984].

Table 2.7. Properties of some generalized service time distributions arranged in or-
der of decreasing squared coefficient of variation. Details regarding the distributions
are presented in the referenced sections

M/G/1 type C2
S Service pattern Reference

M/Hk/1 > 1 Clustered Sect. 2.11.7
M/M/1 1 Randomized Sect. 2.11.2
M/U/1 1/3 Regular (a = 0, b = 1) Sect. 2.11.4
M/Ek/1 1/k Peaked Sect. 2.11.5
M/D/1 0 Constant Sect. 2.11.3

In addition to the distributions of time periods just described, different
scheduling policies can be used to determine the order in which requests are
serviced. Some of the more common policies include:

• First-In-First-Out (FIFO). FIFO is more common in computer hardware
parlance while first-come-first-served (FCFS) is the typical queue-theoretic
term. Requests are serviced from the head of the queue. This is the most
common type of service and the one you most commonly experience in
everyday life.

112 2 Getting the Jump on Queueing

• Last-In-First-Out (LIFO). LIFO corresponds the order in which dishes are
taken from a stack of washed plates in a cafeteria. Last-come-first-served
(LCFS) is the more typical queue-theoretic terminology.

• Round Robin (RR). Time at a resource (e.g., a CPU) is allocated in a
small, fixed amount called a quantum. Requests circulate, in order, via the
queue until their total service time is satisfied.

• Processor sharing (PS). Processor sharing is a simple analytic approx-
imation to RR where the time quantum becomes tiny compared to the
mean service time. Each of N waiting requests receives 1/N of the server’s
capacity. For example, 20 tasks would see only 5 MIPS of a 100 MIPS
processor when they received service. The benefit is that they all see 5
MIPS.

• Priority. Some customers may receive special preference and preempt the
service of those already waiting in the queue. Interrupt priority levels in a
computer system are an expression of this kind of service discipline.

2.11.10 Pollaczek–Khintchine Formula

Until now we have assumed that a newly arriving customer sees not only
those customers already enqueued but also the customer in service and that
this customer requires their full service time complement. It would seem more
realistic to assume that some fraction of the service time still remains. This
quantity is called the residual service time.

Using our earlier explicit notation E(S) ≡ S for the expectation or average
of the distribution of service periods (the first moment) and writing E(S2)
for the second moment, the mean residual service time κ is defined by:

κ =
E(S2)
2E(S)

. (2.113)

With the residual service time included, the average waiting time now com-
prises two terms.

W = LE(S) + κρ (2.114)

The first term is the time due to L customers in the waiting line, each with
an average service time requirement of E(S). The second term is the residual
service time due to the customer currently in service. Since we are dealing
with a single service center, the probability that the server is busy is ρ.

Like the derivation of (2.32) for the uniserver response time in Sect. 2.6.3,
(2.114) is the average waiting time seen by an arriving customer. Applying
Little’s law L = λW to the first term in (2.114) produces:

E(W) = λWE(S) + ρ
E(S2)
2E(S)

, (2.115)

and solving for W yields:

2.11 Generalized Servers 113

E(W)PK =
λE(S2)
2(1 − ρ)

, (2.116)

This is also known as the Pollaczek–Khintchine (or simply P–K) equation for
the average waiting time at an M/G/1 queue. The corresponding expression
for the average residence time:

E(R)PK = E(S) +
λE(S2)
2(1 − ρ)

(2.117)

follows from the general definition R = S + W applied to (2.116).
Equation (2.117) can be written more transparently in terms of the SCOV

(2.98) of the service time distribution:

RPK = S +
ρS

2(1 − ρ)
(1 + C2

S) . (2.118)

where we have now dropped the explicit notation for the first and second
moments. Employing the Kendall notation in Table 2.6 we note that (2.118)
for M/G/1 reduces to the mean response time for an M/D/1 queue (2.102)
when C2

S = 0 and to the M/M/1 case when C2
S = 1. Other generalized server

queues are summarized in Table 2.7. Applying Little’s law Q = λR to (2.118)
yields:

QPK = ρ +
ρ2

2(1− ρ)
(1 + C2

S) . (2.119)

A useful alternative arrangement is:

QPK =
ρ

1 − ρ
+

ρ2

2(1− ρ)
(C2

S − 1) . (2.120)

which can be written symbolically as:

QPK ≡ QM/M/1 +
ρ2

2(1 − ρ)
(C2

S − 1) , (2.121)

which can be compared with (2.103).
The important point to note when using (2.117) is that you must have

measurements of the mean service period as well as the standard deviation or
variance of the service periods.

2.11.11 Polling Systems

So far, in this chapter we have considered queues comprised of single waiting
lines feeding one or more servers. Most of Sect. 2.7 is devoted to a detailed
analysis of the performance gains due multiserver queues. This line of thought
would justifiably lead you to the conclusion that having multiple waiting lines

114 2 Getting the Jump on Queueing

Fig. 2.34. Single server that polls incoming requests from multiple waiting lines

feeding a single server is a configuration that could not possibly offer any
useful performance advantages.

In general this is true, but there are exceptions. The notion of keeping
different track of different types of work by keeping them in different buffers
(waiting rooms) arises in many computer and communication architectures,
e.g., packet multiplexing in Internet routers [Keshav 1998, Gunther et al.
2003], and multiple priority queues in the unix sheduler [Vahalia 1996]. These
are queueing configurations are known as polling systems 2.34.

A polling system contains a single server and N > 1 waiting lines with
infinite capacity, indexed by i = 1, 2, . . . , N . Customers arrive to waiting line
n in accordance with a Poisson process having arrival rate λi, with λi = λj

in a symmetric system. The server visits each waiting line in cyclic (round
robin) order, viz. 1, 2, . . . , N, 1, 2, Without loss of generality, we can
assume that the server is initially at queue n = 1.

If all waiting customers are serviced when the center is polled it is called an
exhaustive system. Otherwise, in a non-exhaustive system, just one customer
is serviced if the center is not empty when it is polled. Total arrival rate is:

λ =
N∑

i=1

λi (2.122)

Total utilization:

ρ =
N∑

i=1

ρi (2.123)

where the utilization ρi = λiE(S). The average waiting time for a symmetric,
non-exhaustive system is given by:

Wpolling =
1

1 − gi

[
λE(S2)
2(1 − ρ)

+
Θ

2(1 − ρ)

(
1 +

ρ

N

)]
, (2.124)

where Θ is the polling delay per waiting line and

gi =
λi Θ

1 − ρ
(2.125)

is the average number of customers served per cycle at the ith waiting line.
The stability condition is gi < 1.

2.12 Review 115

As the polling delay becomes very small Θ → 0, (2.124) reduces to the
P–K equation (2.116). Another interesting special case is a token ring network
(Fig. 2.35) where the second term in (2.124) respresents the latency of the
network.

Fig. 2.35. Token ring network treated as a polling system

2.12 Review

We have covered a lot of ground in this chapter. For future reference and to
help you locate a particular queueing formula, see the compendium provided
in Appendix E. Cross-references to the corresponding explanatory text are
also provided there.

Apart from the trivial exceptions of parallel queues and closed queues, our
discussion has centered on single queues where a customer or request only
visits one queueing center and then departs (in the case of open queues) or
returns to the same queue (in the case of closed queues). In Chap. 3 we consider
the interaction of many queues because systems of queues are required to
analyze the performance of computer systems.

Many of the more mathematical aspects of probability theory were de-
liberately suppressed through the use of averages. This means that higher
moments, such as the variance, cannot be calculated directly, but we can
apply the percentile rules of thumb discussed in Chap 1.

At the very least, you should now have a stronger intuitive understanding
of queues such that you can now make considerable headway with more erudite

116 2 Getting the Jump on Queueing

queueing texts such as [Allen 1990, Kleinrock 1976, Lazowska et al. 1984],
and [Trivedi 2000].

Exercises

2.1. The Pay-And-Pay grocery store chain is considering ways to improve the
performance of the waiting lines at their checkout stands. A heavily trafficed
checkout stand is monitored for 120 min. In that period, 60 customers have
their groceries rung up, and depart from the store. The checker was observed
to be busy 75% of the time.
(a) What is the number of arrivals at that checkout line? Give reasons to
support your conclusion.
(b) What is the average arrival rate into that waiting line?
(c) What is the average throughput at that checkout stand?
(d) What is the average service time per customer?
(e) What are the units of the service time metric in this problem?

2.2. The manager at Pay-And-Pay would like to know what will happen to
a customer’s residence time at the checkout stand in Exercise 2.1 if she adds
another cashier to the end of the waiting line. In other words, if she creates
a single waiting line feeding two servers. There are actually two plausible
scenarios:
(a) Added capacity case. Assume that the total utilization with both checkers
is 75%.
(b) Scaled traffic case. Assume that the utilization of each checker is 75%.
What important point about these two cases would you emphasize to the
grocery store manager?

2.3. An image file takes 1 min to scan (on average). A computer system needs
to be able to scan 75,000 files per month.
(a) How busy will the server be?
(b) What is the average waiting time at the scanner?
(c) How many scanning servers would be required to meet a service level
objective of better than 1.3 min per image file?

2.4. Is there an Erlang A function? Explain your answer.

2.5. Apply Little’s law to show that the comparison of response times in
Fig. 2.26 is also reflected in the respective queue lengths.

2.6. What happens to Fig. 2.26 when the queue lengths or response times are
plotted against arrival rate λ rather than utilization ρ.

2.7. Measurements of a unixdatabase server that supports 100 active users
show that the average user response time is 1.5 s per transaction. The average
CPU service time per transaction is found to be 300 ms, at 25% CPU time
spent in the unixkernel and 50% in user space. What is the average think-time
per transaction?

2.12 Review 117

2.8. A server supports 70 active clients. You use a stopwatch to record and
calculate the average time between the submission of transactions. You find
it to be around 30 s. The paging disk has a measured service demand of 250
ms at 50% disk-busy. What is the average transaction response time?

2.9. An application server receives transactions at the rate of 8 transactions
per second. If each transaction takes an average of 0.7 s to complete, how
many transactions (on average) are simultaneously in the server?

2.10. A hotel bartender knows that, on average, 18 customers arrive per hour
at the bar. Typically, there are 6 customers sitting at the bar. What is the
average time each customer resides at the bar?

3

Queueing Systems for Computer Systems

3.1 Introduction

In Chap. 2 the analysis of queueing performance only involved a single queue-
ing center. Even when more than one queueing center was available, the cus-
tomer only visited one of them. Such single queueing centers can only be used
successfully to represent a single device or elements of a computer system,
e.g., a disk device. If the performance analyst is required to assess the interac-
tion of various devices in the complete computer system, the analysis methods
presented in Chap. 2 are not sufficient, in general.

In general, we need to develop ways for analyzing systems of queues in
order to represent the performance attributes of real computer systems. This
follows from the fact that execution of a computational workload usually
involves more than one subsystem, e.g., CPU, memory, and I/O subsystems.
In queueing parlance, this corresponds to a customer visiting more than one
queueing center and possibly visiting each center more than once, e.g., the
request spends some time at the CPU followed by some memory references,
followed by additional CPU cycles, then some I/O, and so on.

Since several queues are involved in the execution of the workload, it is no
longer clear how to apply the equations we developed in Chap. 2. Historically,
this was also part of the reason that it took about 50 years to apply queueing
concepts to computer systems (Appendix B). We could resort to solving the
necessary system of queues by simulation techniques. This approach takes
time to program (either in a simulation language or with a graphical interface)
and will also take considerable real time to find and verify the steady-state
solutions.

There is another technique that allows us to generalize from the concepts
presented in Chap. 2 to solve systems of queues. It is based on a number of
well-tested assumptions about the behavior of queues. It is known as Mean
Value Analysis or MVA. We present that algorithm in this chapter. Once
understood, however, you will not need to revisit it because it is embedded in
PDQ.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_3, © Springer-Verlag Berlin Heidelberg 2005

120 3 Queueing Systems for Computer Systems

In this chapter you will learn how to extend the characterization of single
queueing centers to include a flow of customers or requests through a sytem
of queues. This is necessary to analyze real computer systems because real
computers involve more than one subsystem, e.g., CPU, memory, and I/O
subsystems.s

We commence with a discussion of how flows of requests can be merged
into a single queue as well as how they can split into multiple flows once
they have been serviced. We then discuss both series and parallel circuits of
queues that can be both open and closed. This also includes possibility of
flows feeding back into the tail of a queue. The next topic is queueing circuits
where more than one workload is serviced. This is necessary because many
computer systems, especially application servers, run more than one task at
a time. We then summarize all these aspects as a set of rules for applying
queueing circuits in performance analysis.

Finally, we show how queueing circuits can be applied to some classic com-
puter systems, e.g., time-share systems, fair-share systems, time-share systems
with priority scheduling, and threaded servers.

3.2 Types of Circuits

In this and subsequent chapters we shall refer to a collection of queues that
represent a computer system as a circuit of queues. In the formal queueing
literature a system of queues is often referred to as a queueing network. In
part, this terminology is historical legacy from a time before queueing mod-
els were widely applied to data networks. We prefer to emphasize the com-
monality with other engineering terminology such as control theory or signal
processing [See e.g., Oppenheim et al. 1983]. These common attributes can be
summarized as follows:

• circuits involve flows (e.g., electrons or requests)
• circuits have defined inputs and outputs
• circuits can be combined in series and parallel or both (see Sects. 3.4.1

and 3.4.5)
• circuits can be partitioned into subcircuits (or subroutines) (see Sect. 3.5.2)
• subcircuits can be shorted out to provide simplified solution techniques

(discussed in Sect. 6.7.11 of Chap. 6)
• circuits can involve feedback which imposes a closed loop (see Sects. 3.4.3

and 3.5)

Clearly, the words network and circuit are interchangeable.
The most convenient way to begin classifying queueing circuits is to first

determine if the circuit is open or closed or mixed. Just like the simplest open
queues in Chap. 2 (e.g., M/M/1), circuits of open queues have arrivals that
come from an external source, receive service at a succession of queueing cen-
ters like those shown in Fig. 3.1, and then depart from the queueing circuit

3.2 Types of Circuits 121

Fig. 3.1. A very simple open queueing circuit. The system is defined by the dotted
box. Customers arrive come from outside the system, receive successive service at
each of the queues in the circuit, and depart the system

Fig. 3.2. A very simple closed queueing circuit. No customers arrive from outside
the system (dotted box), so there is always a finite number of them in circulation

forever, never to return. Like their single queue counterparts, such open cir-
cuits of queues are usually parameterized by the rate λ of incoming requests.
We consider more detailed examples of open circuit queues in Sect. 3.4.

A closed queueing circuit, like that shown in Fig. 3.2, has a finite number
of requests that are constantly circulating within the circuit bounded by the
dashed box. Since no new requests can arrive from or depart to the outside, the

Fig. 3.3. A mixed open (grey arrows) and closed (back arrows) queueing circuit

total number of requests N remains constant and can be used a parameter to
characterize the closed queueing circuit. More detailed examples are presented
in Sect. 3.5.

It is also possible to have a combination of both types of circuits: some
requests flowing into the circuit from outside and then departing, along with
other requests that flow back into the same circuit, such as the one shown in
Fig. 3.3.

Example 3.1. A common example where a mixed-class circuit might be used
to represent a computer system is a time-share computer (Sect. 3.9.1) in
which the interactive (closed) flow of requests is mixed with HTTP Get (open)
requests from the Internet. Such a mixed circuit is solved by first calculating

122 3 Queueing Systems for Computer Systems

the effect of the open workload on the queueing resources separately and then
calculating the performance of the closed workload in the presence of the
diminished resources. ��
We shall return to the interaction mixed workloads in Sect 3.7. For the mo-
ment, we limit ourselves to single-class workloads.

3.3 Poisson Properties

As we discussed in Sect. 2.11.2, Poisson processes are important for analyzing
queueing effects because the interarrival times for requests are exponentially
distributed in time while the number of arrivals in any interval is Poisson
distributed. In this sense, a Poisson process is synonymous with completely
randomized events.

1

2

3

1 + 2 + 3 =

p1

p2

p3

p1

p2

p3

(a) (b)

Fig. 3.4. Poisson streams showing (a) the merging of three arrival streams into one
stream of intensity λ = λ1 + λ2 + λ3, and (b) the branching of a single stream into
three departure streams each selected with independent (Bernoulli) probabilities
p1, p2, p3 such that p1 + p2 + p3 = 1

The interarrival process that generates this characteristic is often referred
to as a Poisson stream; PDQ has a program variable called streams to enu-
merate different work flows. See Sect. 6.5.1 for a more detailed discussion.
This Poisson property ensures the memoryless-ness of the arrivals (See Ap-
pendix C). This, in turn, leads to the so-called PASTA property we shall
present in Sect. 3.3.3. The time to the next arrival is in no way correlated to
the interval that belonged to the previous arrival. Furthermore, it allows us
to handle merging and branching Poisson streams of requests in a simple way.

3.3.1 Poisson Merging

When several Poisson streams arrive at the same point (e.g., the same queue)
they can be combined additively such that they can be treated as single stream
having intensity equal to the sum of the independent streams. This is shown
schematically in Fig. 3.4a.

3.3 Poisson Properties 123

This merging of Poisson streams follows from the properties of the moment
generating function (MGF) for a Poisson random variable X:

GX(θ) = E(eθX) = eλt (exp(θ)−1) , (3.1)

where E(·) is the expectation or statistical mean. The MGF has the property
that if X and Y are two independent random variables then:

GX+Y (θ) = GX(θ) GY (θ) . (3.2)

For two Poisson random variables:

eλ1t (exp(θ)−1) eλ2t (exp(θ)−1) = e(λ1+λ2) t (exp(θ)−1) , (3.3)

In other words, the merging (superposition) of two Poisson streams produces
a single Poisson stream with intensity equal to the sum of their intensities.
This follows from the fact that the product of exponentials is equal to the
exponential sum of the exponents in the MGF. The same conclusion can be
extended to three streams (as in Fig. 3.4) or more.

3.3.2 Poisson Branching

The complement of merging Poisson streams is splitting or branching of
a single stream into several independent Poisson streams. Figure 3.4b de-
picts the branching of a single stream into three departure streams each se-
lected with independent Bernoulli probabilities p1, p2, p3 such that the sum
p1 + p2 + p3 = 1.

Poisson branching and merging is fundamental to routing the flow of requests
in a queueing system. We have already seen it implicitly in Chap. 2 for parallel
queues (Sect. 2.6.5) where arrivals split uniformly into separate streams for each
queue, and for multiserver queues (Sect. 2.7) where requests are serviced from
the waiting line by splitting them uniformly (i.e., with equal probability) into each
server. In this chapter, we consider Poisson streams that flow between different
queueing centers (e.g., CPU, disk, LAN) in a circuit representation of a computer
system.

The formal proofs of these theorems for Poisson splitting (decomposition)
and merging (superposition) can be found in more mathematical texts such
as [Allen 1990] and [Trivedi 2000].

3.3.3 Poisson Pasta

Think back to the grocery store example in Sect. 2.3. One of the considerations
you might have in choosing which line to join is the estimated amount of time

124 3 Queueing Systems for Computer Systems

remaining for the customer currently having their groceries rung up. This
estimate would be very pertinent if they were the only customer ahead of
you. It is the least amount of time you have to wait before you can begin your
own service.

But how do things appear to a grocery shopper who is casually watching
all the checkout lines without having joined any? We called this the residual
service time given by (2.113) in Sect. 2.11.10, and it was the basis for the
Pollaczek–Khintchine formula (2.118).

Technically, these two time estimates—the one belonging to the arriving
customer and the other to external grocery shopper—can be shown to be
different, in general. If, however, the arrivals are of the Poisson type we have
been describing here, the time estimates will be equivalent. This important
Poisson property is called the PASTA property: Poisson Arrivals See Time
Averages.

All of the above Poisson properties have been stated without formal proof.
The interested reader is encouraged to see the proofs in more mathematical
books on queueing theory [Kleinrock 1976, Allen 1990, Trivedi 2000].

Certain kinds of Internet traffic produce arrivals that are highly correlated
over extensive periods of time: from milliseconds to minutes. These time-
based correlations seriously violate the above Poisson properties, and other
techniques have to be applied to analyze such non-Poisson characteristics. An
excellent account of the history of this problem (see also Appendix B) and
some of the techniques that have been developed over the last decade to deal
with it can be found in Park and Willinger [2000].

3.4 Open-Circuit Queues

Unlike the single queues we examined in Chap. 2, there is no equivalent of
Kendall notation for circuits of queues. However, queueing circuits can be
thought of as having many properties in common with electrical circuits, and
some of those concepts and notations can be applied. The flow of requests in
Fig. 3.1, for example, is analogous to electrical current flow.

Although requests are discrete entities (just like electrons), if there is a
reasonable number of them being serviced in the queueing circuit such that
time can be regarded as continuous, the analogy with direct electrical current
is very apt. And just like an electric circuit (or the availability of components
discussed in Sect. 1.7.5 of Chap. 1), the flow of requests between queues can
coupled in series or in parallel or a combination of both.

In Sect. 3.9.4, we shall apply a form of circuit decomposition to threads
scheduling. This is the queueing circuit analog of Thevenin’s theorem for elec-
trical circuits [Jain 1990, Sect. 36.2], which allows us to treat subcircuits
separately by shorting them out from the entire circuit. But first, we consider
different types of series queueing circuits in more detail.

3.4 Open-Circuit Queues 125

3.4.1 Series Circuits

The most common type of series queueing circuit is one that involves feed-
forward queues (Fig. 3.5), where serviced requests flow out of the queueing
center and into the tail of the queue at the next center.

Alternatively, the flow out of one queueing center can split into multiple
flows (according to the rules of Sect. 3.3) that enqueue simultaneously at
different queueing centers. An important example of this kind of splitting
produces queues with feedback flows. A special case of feedback queueing
occurs when there are no flows to and from the outside; it corresponds to
a closed circuit (Sect. 3.5). We now examine each of these circuits in turn,
starting with simple feedforward queues.

3.4.2 Feedforward Circuits

A series circuit comprising feedforward queues is also known as tandem queue-
ing arrangement. Consider a series circuit in Fig. 3.5 consisting of three queue-

D1 D2 D3

Fig. 3.5. A three-stage tandem circuit of queues

ing centers, each with service demands of D1 = 1 s, D2 = 2 s, and D3 = 3 s,
respectively and receiving arrivals at a rate of 0.10 requests/s. By virtue of
the Poisson arrival properties discussed earlier, together with the assumption
that the service periods are exponentially distributed, we can treat this tan-
dem circuit of queues as a separable network of three independent M/M/1
queues. To establish the correctness of this approach, we calculate the utiliza-
tion, response time and queue-length for each queueing center. The results
are tabulated in Table 3.1. The input parameters for the open circuit appear
in the upper half of the table and the outputs appear in the lower half.

In particular, Little’s law tells us that the sum of the individual queue
lengths should be equal to the total number of requests in the system as given
by λ(R1 + R2 + R3). Indeed, we see from the entries (in bold) in Table 3.1
that this is true. The associated PDQ model in Perl is presented in Chap. 6,
Sect. 6.7.6.

Because of the properties of Poisson streams, this result can be generalized
to the case where the queueing centers are M/M/m rather than M/M/1. In
other words, a series circuit of M/M/m multiserver queues is also separable.
This is Jackson’s theorem, which we shall examine more closely in Sect. 3.4.4.

126 3 Queueing Systems for Computer Systems

Table 3.1. Tandem queueing circuit

Metric Queue stage Total
1 2 3

Arrival rate 0.10 0.10 0.10
Service demand 1.00 2.00 3.00

Utilization 0.10 0.20 0.30
Response time 1.11 2.50 4.29 7.90
Queue length 0.11 0.25 0.43 0.79
Little’s law 0.79

3.4.3 Feedback Circuits

So far, we have discussed queueing centers where a request arrives at random
from an external source, queues for service, receives service, and then departs
the center, never to return. Clearly, there are cases where a request that has
already received service returns for further service:

• a customer forgets to purchase an item and must return to the store
• children form a line to repeat sliding in a playground
• packets must be retransmitted on a communication network

11

p 1

(1-p) 1

internal

external

Fig. 3.6. An open queue where some portion of departing requests are feedback
into the tail of the queue

This effect is called feedback, and Fig.3.6 shows how it is represented as
a queueing diagram. External arrivals occur at a rate λ. Requests that have
already received service either depart from the system or return to the tail of
the queue with branching probability p. They therefore return with a (smaller)
rate pλ1, which combines with new arrivals, such that effective arrival rate
into the queue is:

λ1 = λ + pλ1 . (3.4)

This equation can be solved for λ1 as:

λ1 =
λ

1 − p
. (3.5)

3.4 Open-Circuit Queues 127

The utilization of the server, as defined by (2.15), is

ρ = λ1S , (3.6)

due to the internal arrival rate λ1. The feedback flow would appear to present
difficulties because we do not know how to represent the effects of the queue
receiving inputs from both an external source and an internal source. Fortu-
nately, we can demonstrate that such problems are illusory.

First, we define the mean number of visits to the server:

Vsrv =
Csrv

Csys
, (3.7)

where Csrv is the number of completions at the server and Csys is the number
of completions measured at the system level where, in fact, there may be more
the one queueing center. Applying the definition of throughput found in (2.3),
(3.7) can be rewritten as:

Vsrv =
Csrv/T

Csys/T
,

=
λsrv

λ
,

=
λ1

(1 − p)λ1
, (3.8)

where we have used the fact that λ ≡ (1 − p) λ1 in Fig 3.6. Hence, the mean
number of visits to the server can be expressed in terms of the branching
probability p such that:

Vsrv =
1

(1 − p)
. (3.9)

The more return visits a request makes to the server, the greater is the ac-
cumulated service time, which is just the service demand D = VsrvS defined
by (2.9) in Chap. 2. Viewed externally, the total time spent in the system is
therefore:

R =
D

(1 − λD)
, (3.10)

which is the same as the response time for an M/M/1 queue.
Viewed internally, the response time per visit Rv can be expressed in terms

of the local arrival rate λ1 as:

Rv =
S

1 − λ1S
. (3.11)

The relationship between the system response time and the per-visit response
time is simply:

R = V Rv . (3.12)

128 3 Queueing Systems for Computer Systems

Feedback is specified in terms of the number of visits V, which acts like a scale
factor on the service time, not the queue length. To see this, consider Fig. 3.7
and recall that the queue length Q appears in the definition of response time
according to (2.32). The per-visit response time of (3.12) is scaled by V and
gives rise to the following steps:

Rv = V (S + SQ) ,

= V S + V SQ (by the distributive law) ,

= D + DQ (by the definition D = V S) ,

= D (1 + Q) .

Clearly, the service time S is dilated by V to become the service demand D,
while the number of requests in the queue remains unaffected.

Q

VS

S

V

Fig. 3.7. Invariance of queue length under feedback dilatations

Feedback is a time-dilatation transformation with scale parameter V , the mean
number of visits to the server. The queue length Q is invariant under the scaling
symmetry in (3.12). This invariance is depicted in Fig. 3.7 and is at the core of
Jackson’s theorem in Sect. 3.4.4.

Example 3.2. Command messages arrive into a satellite telemetry channel at
a rate of one every 2 s and they take 0.75 s to process. Thirty percent of the
transmission attempts are unsuccessful, and those messages must be enqueued
for retransmission. Calculate the response time in the transmission channel
as seen from the internal box in Fig 3.6. The internal arrival rate is

λ1 =
λ

(1 − p)
= 0.715 .

From (3.9) the average number of visits per message is

V =
1

1 − p
= 1.429 .

The corresponding utilization is ρ = λ1S = 0.536. From (2.38) in Chap. 2 the
time spent waiting in the queue is

3.4 Open-Circuit Queues 129

W =
ρS

1 − ρ
= 0.866 s ,

and the response time per visit in the channel is: Rv = W + S = 1.616 ms.
The total response time is the product R = V Rv:

R = 1.429× 1.616 = 2.310 s.

In other words, the total response time is given by the response time per visit
scaled up by the average number of visits due to retransmission feedback. ��
In the next example, we repeat the response time calculation for the trans-
mission channel as seen from the external box in Fig 3.6.

Example 3.3. The external arrival rate is λ = 0.50 messages/s. The service
demand is D = V S = 1.429× 0.75 = 1.072 s. Then, from (3.10) the external
response time is

R =
1.072
0.464

= 2.310 s ,

which confirms that the both the internal and the external views are identical.
This is the basis of Jackson’s theorem, which we present in the Sect 3.4.4. ��
These examples show that feedback can be accommodated in the tools like
PDQ via (3.10) by relating branching probabilities and mean visits to the
service demand. The interested reader can find the corresponding PDQ model
in Sect. 6.7.7 of Chap. 6.

In passing, we note that all of the formulae in Chap. 2 that were previously
expressed in terms of the service time S can be rewritten in terms of the service
demand D. From a practical standpoint, the number of visits is often an easily
measured quantity in computer systems.

3.4.4 Jackson’s Theorem

So far, in this chapter we have considered both feedforward and feedback open
queueing circuits. An example of a queueing circuit where both these effects
are present is shown in Fig. 3.8a. Since multiple streams may join a queue
because of feedback, the arrivals are correlated with previous service periods
and therefore violate the Poisson properties of Sect. 3.3. Allen [1990] noted
that the arrivals are actually a special case of a hyperexponential distribution
H2, which we discussed in Sect. 2.11.7. How does this complication affect our
ability to analyze general queueing circuits and, in particular, how does it
impact the use of PDQ?

In a surprising result (totally unrelated to computer performance analysis) Jackson
[1957] showed that although the arrivals into the queue are not Poisson-type, each
queueing center still behaves statistically as though they it were an M/M/1 queue
subjected to Poisson arrivals.

130 3 Queueing Systems for Computer Systems

p

p

(1 - p)

CPU Disk

Scpu Sdisk

p

(1 - p)
CPU

Disk

Scpu

Sdisk

(a)

(b)

Fig. 3.8. A simple Jackson-type queueing circuit in (a) with its topologically equiv-
alent circuit in (b)

We pause to reflect on the fact that this was the first major advance in queue-
ing theory (Appendix B) since Erlang’s pioneering work in 1917. Why? Be-
cause Erlang’s results were for a single queue, whereas Jackson showed for the
first time (albeit 40 years later) that it was possible to solve circuits of queues
with rather complicated non-Poisson flows. As we noted in the Introduction,
it is critical for the analysis of computer systems that systems of queues can
be solved. Jackson’s theorem demonstrates that that is indeed possible.

To understand this result more clearly, consider the simple circuit in
Fig. 3.8a. External requests arrive at a rate λ. After executing on the CPU they
may either depart the queueing circuit altogether or continue with branching
probability p to perform some disk I/O operations. After completing I/O ser-
vice the request feeds back into the CPU run-queue. This Jacksonian circuit
can be rearranged topologically into the equivalent circuit shown in Fig. 3.8b.
The stream of requests returning with rate pλ1 combines with new arrivals
coming from outside the circuit at rate λ to give an effective arrival rate into
the CPU queue that is identical to (3.4).

The utilization at the CPU and disk can be written respectively as

ρcpu = λ1Scpu =
λ

1 − p
Scpu , (3.13)

and
ρdisk = p λ1Sdisk =

λ p

1 − p
Sdisk . (3.14)

3.4 Open-Circuit Queues 131

CPU Disk

Dcpu Ddisk

Fig. 3.9. Equivalent tandem circuit for Fig. 3.8 without feedback

Recalling that the service demand is D = V S, (3.13) can be rewritten as

ρcpu = λDcpu , (3.15)

and (3.14) can be rewritten as

ρdisk = λDdisk . (3.16)

By analogy with (3.10), the system response time of the tandem circuit the
sum of the response times expressed in terms of (3.15) and (3.16):

R =
Dcpu

1 − λDcpu
+

Ddisk

1 − λDdisk
, (3.17)

which is the same as the system response time for the simple tandem circuit
without feedback in Fig. 3.9. This symmetry between the service demand and
the service time weighted by the visit frequency is at the heart of Jackson’s
theorem. It allows us to fold all the complications of feedback and non-Poisson
arrivals into the service demands of a series of M/M/1 queues. Next, we apply
these insights based on Jackson’s theorem to a more complex queueing circuits
involving parallel queues in series.

3.4.5 Parallel Queues in Series

We consider a queueing circuit model of a passport application office that
involves both series and parallel queues like that shown in Fig. 3.10. Upon
entering the passport office you must register at window 1 to validate your
application. On average, this takes 20 s. From there, you have a 30% chance
of being directed to window 2 to fill out the application form and present your
birth certificate which takes 10 min (on average). If you are among the 70%
of applicants who do not have a suitable photograph, you will be directed to
window 3 to get one and that usually takes 5 min. After that, there is a 10%
chance you will have to return to window 2 or you may simply present the
completed application for payment at window 4 to receive your passport after
1 min.

As the arrows in Fig. 3.10 depict, this is an example of a parallel queueing
circuit (window 2 and window 3) in series with the queues associated with

132 3 Queueing Systems for Computer Systems

window 1 and window 4. In addition, there are cross-coupled flows between
the parallel queues. We solve this circuit by using the branching ratios shown
in Fig. 3.10. These branching ratios simply correspond to the percentage of
the departing traffic headed for the next queues.

Window 4Window 1

Window 3

Window 2

0.30

0.70

0.20
0.80

0.10 0.90

Fig. 3.10. Open queueing circuit model of a passport application office

To solve this rather complex problem, we first calculate the utilizations using
Littles law given by (2.26) in Chap. 2, with X replaced by λ, the arrival
rate into the passport office. The service times are expressed in seconds. The
corresponding utilizations are:

ρ1 = 20 λ ,

ρ2 = 600 λ2 ,

ρ3 = 300 λ3 ,

ρ4 = 60 λ4 .

To evaluate ρ2 and ρ3, we need to determine λ2 and λ3. We use the Poisson
merging rules in Sect. 3.3 to define those rates as:

λ2 = 0.3 λ + 0.1 λ3 , (3.18)
λ3 = 0.7 λ + 0.2 λ2 . (3.19)

This pair of simultaneous equations reflects the cross-coupling in the traffic
flows. They can be solved with a little tedious algebra, setting up a spreadsheet
or writing a Perl program like passcalc.pl below. To expedite the solution,
it helps to first substitute (3.19) into (3.18) and rearrange terms to produce:

λ2 = 0.3 λ + (0.1)(0.7)λ + (0.1)(0.2)λ2

=
λ [0.3 + (0.1)(0.7)]

1 − (0.1)(0.2)
. (3.20)

3.4 Open-Circuit Queues 133

Equation (3.20) becomes the Perl variable $L2 in passcalc.pl, and it can be
substituted into (3.19) to solve for λ3 or the Perl variable $L3 in passcalc.pl.

Once λ2 and λ3 are known, we can use (2.36) from Chap. 2 to calculate
the queue lengths at each of the passport office windows:

Qk =
ρk

1 − ρk
, k = 1, 2, 3, 4.

Applying Little’s law once again, we can calculate the average amount of time
you can expect to spend in the passport office:

R =
Q1 + Q2 + Q3 + Q4

λ
.

These equations have been encoded in the following Perl script:

#! /usr/bin/perl

passcalc.pl

$appsPerHour = 15;

$lambda = $appsPerHour / 3600;

Branching ratios

$p12 = 0.30;

$p13 = 0.70;

$p23 = 0.20;

$p32 = 0.10;

printf(" Arrival: %10.4f per Hr.\n", $appsPerHour);

printf(" lambda : %10.4f per Sec.\n", $lambda);

printf("----------------------------\n");

$L2 = $lambda * ($p12 + ($p32 * $p13)) / (1 - ($p32 * $p23));

$L3 = ($p13 * $lambda) + ($p23 * $L2);

printf(" lambda1: %10.4f * lambda\n", 1.0);

printf(" lambda2: %10.4f * lambda\n", $L2 / $lambda);

printf(" lambda3: %10.4f * lambda\n", $L3 / $lambda);

printf(" lambda4: %10.4f * lambda\n", 1.0);

printf("----------------------------\n");

$rho1 = $lambda * 20;

$rho2 = $L2 * 600;

$rho3 = $L3 * 300;

$rho4 = $lambda * 60;

printf("Uwindow1: %10.4f * lambda\n", $rho1 / $lambda);

printf("Uwindow2: %10.4f * lambda\n", $rho2 / $lambda);

printf("Uwindow3: %10.4f * lambda\n", $rho3 / $lambda);

printf("Uwindow4: %10.4f * lambda\n", $rho4 / $lambda);

printf("----------------------------\n");

$Q1 = $rho1 / (1 - $rho1);

$Q2 = $rho2 / (1 - $rho2);

134 3 Queueing Systems for Computer Systems

$Q3 = $rho3 / (1 - $rho3);

$Q4 = $rho4 / (1 - $rho4);

printf("Qwindow1: %10.4f\n", $Q1);

printf("Qwindow2: %10.4f\n", $Q2);

printf("Qwindow3: %10.4f\n", $Q3);

printf("Qwindow4: %10.4f\n", $Q4);

printf("----------------------------\n");

$R = ($Q1 + $Q2 + $Q3 + $Q4) / $lambda;

printf("Rpassprt: %10.4f Secs.\n", $R);

printf("Rpassprt: %10.4f Hrs.\n", $R / 3600);

printf("----------------------------\n");

If the arrival rate at the registration window 1 is 15 applicants per hour, the
results of running the program are:

Arrival: 15.0000 per Hr.

lambda : 0.0042 per Sec.

lambda1: 1.0000 * lambda

lambda2: 0.3776 * lambda

lambda3: 0.7755 * lambda

lambda4: 1.0000 * lambda

Uwindow1: 20.0000 * lambda

Uwindow2: 226.5306 * lambda

Uwindow3: 232.6531 * lambda

Uwindow4: 60.0000 * lambda

Qwindow1: 0.0909

Qwindow2: 16.8182

Qwindow3: 31.6667

Qwindow4: 0.3333

Rpassprt: 11738.1818 Secs.

Rpassprt: 3.2606 Hrs.

Given these performance predictions, it might be more prudent to mail in
your passport application. The passport office queueing circuit was solved
here, without any assistance from PDQ, by explicitly coding the fundamental
queue length formula from Chap. 2 into passcalc.pl. The corresponding
PDQ model passport.pl, which takes of all that for you, is presented in
Sect. 6.7.8 of Chap. 6.

3.4 Open-Circuit Queues 135

3.4.6 Multiple Workloads in Open Circuits

In Fig. 3.3 we see that it was possible to have both open and closed circuits
combined and therefore they involve mixed workloads. The same queueing
centers service two different types of workloads. In this sense, the type of
workload determines the type of queueing circuit.

By extension, it is possible to have an open circuit of queues with more
than one stream of arrivals impinging on each server. Fig. 3.11 shows two dif-
ferent streams of work in a tandem queueing circuit. This might be applicable
for a simple queueing circuit that accounts for the fact that the CPU and the
disk must service requests from both the operating system (kernel) and an
application, e.g., a database. The two streams of arrivals A and B depicted

CPU
serverStream A

Disk
storage

Stream B

Fig. 3.11. An open queueing circuit with two streams of arrivals

in Fig. 3.11 are characterized by their different arrival rates λA and λB and
their respective service demands DA

k and DB
k at each of the k = 2 queueing

centers in the circuit. The total utilization at queueing center k is simply the
sum of the utilizations due to each stream:

ρk = ρA
k + ρB

k . (3.21)

By virtue of Jackson’s theorem (Sect. 3.4.4), the response time at each
queue in the circuit in Fig. 3.11 can be calculated in a way analogous to the
definition of response time (2.35) for an M/M/1 queue in Chap. 2. Applying
(3.21), the response time for stream A at the CPU is given by

RA
cpu =

DA
cpu

1 − (ρA
cpu + ρB

cpu)
, (3.22)

and similarly for stream A at the disk queue the response time is:

RA
disk =

DA
disk

1 − (ρA
disk + ρB

disk)
. (3.23)

The difference between (2.35) and (3.22) or (3.23) is the utilization term in
the denominator which takes into account the sharing of each resource by
both streams A and B.

From the viewpoint of stream A, for example, the service rate at the CPU
(or the disk) appears degraded by the consumption of service cycles because of

136 3 Queueing Systems for Computer Systems

the presence of stream B in the circuit. The greater the utilization by stream
B, the longer the wait for stream A, and this will be reflected in a larger value
of RA

cpu in (3.22).
The response time RA for stream A:

RA = RA
cpu + RA

disk , (3.24)

is simply the sum of the two contributions from (3.22) and (3.23) and similarly
for stream B. We shall apply these concepts of multiple open workloads to
the client/server model in Chap. 9.

3.5 Closed-Circuit Queues

So far, in this chapter we have considered open queueing circuits. When we
turn to closed circuits of queues, however, we run into a problem. Since, by
definition, there can only be a finite number of requests distributed throughout
a closed circuit, the state of each queue is interdependent on the state of all
the other queues. As a consequence, the previous assumption that each queue
in the circuit can be solved separately (à la Jackson’s theorem in Sect. 3.4.4)
is no longer valid, and there is no closed-form analytic solution.

Historically, Gordon and Newell [1967], as well as Buzen [1973], developed
analytical techniques for solving separable closed queueing circuits (see Ap-
pendix B), which have come to be known as the convolution method [See e.g.,
Jain 1990, Chap. 35 and references therein]. A more detailed discussion of
separability criteria for general queueing networks is given at the end of this
chapter in Sect. 3.8. Unfortunately, the convolution technique suffers from
potential numerical instabilities. The modern approach uses a more robust
iterative solution technique based on the following observation.

3.5.1 Arrival Theorem

Recall from Chap. 2 what happens to arrivals into an open queue. Under the
assumption that all requests have mean service demand Dk, we can rewrite
(2.32) as:

Rk = Qk Dk + Dk , (3.25)

so that (3.25) includes the possibility of there being 0 ≤ k ≤ K queues in the
open circuit. When a request arrives at queueing center k, its expected time
in the system is determined by the sum of two contributions:

• The first term in (3.25), which is the product of the average number of
requests Qk in the system ahead of the arriving request and the average
service demand Dk of each request

• The second term in (3.25), which is the new arrival’s own service demand
Dk once it finally reaches the server

3.5 Closed-Circuit Queues 137

Dk

Qk

Dk

Fig. 3.12. Arrivals into an open queueing circuit see the time-averaged queue length
at queue k ahead of them, determines the response time given by (3.25)

The first term in (3.25) is simply the waiting time Wk at queue k.
Equation (3.25) holds no matter whether the new arrival has come from out-
side the open circuit, as the departure from an upstream queue, as a branch
of departures that split into multiple streams, or combining with previously
serviced requests that are being fed back into the tail of the queue. We could
refer to (3.25) as the Arrival Theorem for open circuit queues.

Dk

N, Z

Dk

Qk
N-1

Fig. 3.13. Arrivals into a closed queueing circuit see the time-averaged queue length
caused by (N − 1) requests at queue k, which determines the response time given
by (3.27)

A generalization of this open Arrival Theorem originally formulated by [Reiser
and Lavenberg 1980] and [Sevcik and Mitrani 1981] leads to the correspond-
ing closed-circuit version of the Arrival Theorem [Allen 1990, Thm. 6.2.2].
Referring to Fig. 3.13, it states:

The instantaneous queue length Qk(t) seen by an arrival in a closed
queueing circuit is the same as the time-averaged queue length with
one less request QN−1

k in the system.

The time-averaged queue length (4.12) also arises in the context of the unix
load average metric in Chap. 4. More formally, the following replacement:

Qk(t) ≡ QN−1
k (3.26)

holds, and the average response time at the kth center can be expressed as:

138 3 Queueing Systems for Computer Systems

RN
k = Dk + Dk QN−1

k . (3.27)

We examine the relationship between instantaneous queue length Q(t) and
the time-averaged queue length Q in Sect. 4.4.1.

An intuitive justification for (3.27) follows from the fact that at the instant
the new request is arriving at the service center, it cannot also be in the queue,
that is, it cannot “see” itself in the queue. Hence, there can only be (N − 1)
other requests that could possibly interfere with the new arrival. The number
of requests actually enqueued can be regarded as the average queue length
when there were only (N − 1) requests in the system.

The recursive nature of the relationship between queueing metrics indexed
by N requests on the left side of (3.27) and (N − 1) requests on the right
side provides the basis of the iterative algorithm known as the Mean Value
Algorithm or simply MVA.

3.5.2 Iterative MVA Algorithm

The MVA algorithm for a closed circuit iterated over l ≤ K queues and n ≤ N
requests can be written as a Perl subroutine.

mvasub.pl

sub mva

{

Reset queue length and response time arrays

@Q = ();

@R = ();

for ($n = 1; $n <= $N; $n++) {

1. Calculate the residence time at k

for ($k = 1; $k <= $K; $k++) {

$R[$k] = $D[$k] * (1.0 + $Q[$k]);

}

2. Calculate system response time

$rtt = $Z;

for ($k = 1; $k <= $K; $k++) {

$rtt += $R[$k];

}

3. Calculate system throughput

$X = ($n / $rtt);

4. Calculate new queue length at k

for ($k = 1; $k <= $K; $k++) {

$Q[$k] = $X * $R[$k];

}

3.5 Closed-Circuit Queues 139

}

}

The algorithm consists of four essential steps that are repeated iteratively
for each request n in the system, starting at n = 1, and incremented by one
request at a time until the specified population n = N is reached.

1. Calculate the response time given by (3.27) at each queue based on the
number of requests in the previous iteration with (n − 1) requests.

2. Calculate the response time for the entire system by adding the response
times in step 1.

3. Calculate the throughput X for the entire system by applying the Re-
sponse Time law (2.89) from Chap. 2.

4. Calculate the new number of requests Qn
k at each queue by applying Lit-

tle’s macroscopic law given by (2.14) in Chap. 2.

When applied to the closed queueing circuit in Fig. 2.19 of Chap. 2, the
MVA algorithm produces the throughput characteristic seen in Fig. 2.21 and
the typical hockey stick characteristic for the response time seen in Fig. 2.20.
For a single queue circuit, these results are in complete agreement with those
obtained by using the Perl script repair.pl in Sect. 2.8.3. The MVA algo-
rithm, of course, is much more general because it is valid for closed circuits
with multiple queues, not just a single queue. Recent attempts to extend MVA
to parallel computation are discussed in [Gennaro and King 1999].

3.5.3 Approximate Solution

There is a way to avoid the loop over n ≤ N by approximating the queue
lengths. Assuming that N is large, the queue lengths at each node increase in
the following proportion:

Qk(N) ∝ N , (3.28)

or equivalently
Qk(N − 1) ∝ (N − 1) . (3.29)

Then we have

lim
N→∞

Qk(N − 1) =
(

N − 1
N

)
Qk(N) . (3.30)

Substituting into (3.27) produces the following approximation for the response
time at queueing node k:

Rk = Dk +
(

N − 1
N

)
Dk Qk(N) , (3.31)

For a closed circuit comprising K nodes and N users, the algorithm in Perl
code looks like this:

140 3 Queueing Systems for Computer Systems

mvaapproxsub.pl

sub approx

{

Reset queue lengths and response times

@Q = (); # number of requests at queue k

@R = (); # residence time at queue k

$tolerance = 0.0010; # stopping condition

for ($k = 1; $k <= $K; $k++) {

$Q[$k] = $N / $K;

}

while (max($Q[$k] - ($X[$k] * $R[$k])) > $tolerance) {

for ($k = 1; $k <= $K; $k++) {

$R[$k] = $D[$k] * (1.0 + $Q[$k] * ($N - 1) / $N);

}

$rtt = $Z;

for ($k = 1; $k <= $K; $k++) {

$rtt += $R[$k];

}

$X = ($n / $rtt);

for ($k = 1; $k <= $K; $k++) {

$Q[$k] = $X * $R[$k];

}

}

}

In PDQ the exact MVA solution and this approximation are distinguished by
the flags EXACT and APPROX, respectively (Sect. 6.5.1 in Chap. 6).

Example results using the approx subroutine are plotted in Figs. 3.14
and 3.15. We see that the approximate method tends to slightly underesti-
mate the throughput near the knee in the curve at Nopt ≈ 21 (defined in
Sect. 5.3.3). Conversely, the approximate algorithm tends to slightly overesti-
mate the response time near Nopt ≈ 21 in Fig. 3.15. Nonetheless, these small
deviations in accuracy from the exact MVA algorithm can represent a wise
trade-off when hundreds or thousands of users or processes (as is often the
case with Web servers) must to be analyzed.

3.6 Visit Ratios and Routing Probabilities

Now that we have discussed both open and closed circuits, we revisit the
concept of visit ratios introduced in Sect. 2.4.5 from the perspective of the
branching probabilities pk associated with routing requests between queues.

3.6 Visit Ratios and Routing Probabilities 141

0.00

0.50

1.00

1.50

2.00

2.50

1 6 11 16 21 26 31 36 41 46

Users (N)

X
(N

)

Exact

Approx

Fig. 3.14. Comparison of exact and approximate throughput curves

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50

Users (N)

R
es

po
ns

e
tim

e
R

(N
)

Exact

Approx

Fig. 3.15. Comparison of exact and approximate response time curves

142 3 Queueing Systems for Computer Systems

In Chap. 2 we introduced the notion of counting repeated visits to a server
to define the service demand Dk in (2.9). In that case, the visit count can be
thought of an integer Vk = 1, 2, However, this concept can be made more
general.

3.6.1 Visit Ratios and Open Circuits

In Sects. 2.4.5 and 3.4.3, we defined the visit ratio as:

Vk =
Ck

Csys
, (3.32)

where Ck is the count of completions at the kth queueing center in the circuit,
and Csys is the count of completions for the entire circuit.

Unlike a count of visits, (3.32) is defined as a ratio and thus does not have
to be an integer. Dividing both the numerator and the denominator in (3.32)
by T produces:

Vk =
Ck/T

Csys/T
=

Xk

Xsys
, (3.33)

where we have applied the definition of the throughput in (2.3) and (2.4) from
Sect. 2.4 of Chap. 2. Based on (3.33), we see that the visit ratio can also be
thought of a relative throughput. Rearranging terms simplifies (3.33) to:

Xk = VkXsys (3.34)

This form is sometimes referred to as the Forced Flow Law [Allen 1990, Jain
1990, Lazowska et al. 1984].

Example 3.4. Referring to the feedback queue in Fig.3.6, we have the global
throughput Xsys = λ and the local throughput Xk = λ1. At the input branch
(near the tail of the waiting line), (3.4) implies:

λ = (1 − p)λ1 ,

with p the probability for branching back into the waiting line. Substituting
all this into (3.33) produces

Vk =
λ1

λ
=

1
1 − p

,

in agreement with (3.9). This result also shows how the visit ratio (or relative
throughput) is related to the branching probability p. ��

To maintain the flow of traffic at the fundamental branch intersections
shown in Fig. 3.4, there can never be any accumulation or dissipation of
requests. Any accumulation occurs at queues, and the only dissipation of
requests occurs when they leave the system altogether. This is the reason for
the reference to forced flow.

3.6 Visit Ratios and Routing Probabilities 143

Xcpu

V

X

CPU

DiskA

DiskB

XdiskA

XdiskB

p

(1 - p)
Vcpu

VdiskA

VdiskB

q

Fig. 3.16. Closed queueing circuit with routing probabilities p and q

3.6.2 Visit Ratios and Closed Circuits

Consider the closed circuit in Fig. 3.16. We write the system throughput as
X ≡ Xsys and the system visit ratio as V ≡ Vsys. The visit ratios for the
remaining queueing nodes in the circuit can be written as:

Vcpu =
Xcpu

X
,

VdkA =
XdkA

X
, (3.35)

VdkB =
XdkB

X
,

in accordance with the definition in (3.33). Furthermore, applying the Poisson
branching rules in Fig. 3.4, the flow equations are:

Xcpu = X + (1 − p)(XdkA + XdkB) ,

XdkA = qXcpu , (3.36)
XdkB = (1 − q)Xcpu ,

where the branching ratios p and q in Fig. 3.16 are independent of each other.

Example 3.5. If the branching ratios p = 0.20 and q = 0.60, the flow equa-
tions (3.36) can be solved for the system throughput in terms of the CPU
throughput: X = 0.2Xcpu. The resulting visit ratios (3.35):

V = 1, Vcpu = 5, VdkA = 3, VdkB = 2, (3.37)

are produced by each integral user request, or equivalently, each integral sys-
tem completion. Since they are all integers, this is how things might actually
appear in monitored performance data. ��

144 3 Queueing Systems for Computer Systems

As we have seen, both open and closed queueing circuits can be solved using
relative throughputs or visit ratios. The visit ratios provide sufficient information
to calibrate and solve a PDQ model even when the branching ratios are not
known. This one of the virtues of the analytic approach; simulations cannot be
solved without the explicit branching ratios.

Example 3.6. If the visit ratios in (3.35) are expressed relative to each visit to
the CPU, Vcpu = 1 and:

V =
1
5
, Vcpu = 1, VdkA =

3
5
, VdkB =

2
5
. (3.38)

These are the visit ratios produced by each integral visit to the CPU. For
every CPU completion, the request returns to the user 20% of the time, i.e.,
V = 0.20. Note that the overall ratios are in the same proportion as in Exam-
ple 3.5. ��

3.7 Multiple Workloads in Closed Circuits

In this section we construct a closed-circuit queueing model of a simple com-
puter system that is due for a processor upgrade. This example emphasizes the
importance of multiclass workload analysis—even on a simple computer sys-
tem. It also reveals the importance of looking for effects that might otherwise
not be perceived with common sense. Failure to do this type of performance
analysis can lead to incorrect performance projections.

3.7.1 Workload Classes

In the queueing theory literature a workload associated with an open queueing
circuit is often referred to as a transaction workload class. Similarly, workloads
associated with closed queueing circuits come in two varieties, often called
terminal and batch. Each of these workload classes are distinguished as follows:

• A terminal workload is characterized by a constant number of users N
or user processes and their mean think time Z. The arrival rate into the
queueing circuit is not constant. It is reduced in proportion to the number
of requests already in service or waiting for service. Historically, this ter-
minology arose out of applying queueing theory to a time-share computer
system where a finite number of users were connected literally by a fixed
number of terminals.

• A batch workload is characterized by the number N of batch processes.
The objective for a batch workload is to maximize its utilization of pro-
cessor and I/O time so that it completes within a specified time—the

3.7 Multiple Workloads in Closed Circuits 145

batch window. Since batch processes do not involve any delay due to user
interaction, the think time parameter is not applicable.

• A transaction workload is characterized by the arrival rate λ. This is the
characterization used in Chap. 2 and Sect. 3.4. It applies when the number
of users is unknown. Such a situation arose historically with ATM bank-
ing systems, while today it also applies to HTTP-based Web servers (see
Chap. 10). The effective population making requests can be regarded as
infinite because the rate at which requests arrive into a queue is unaffected
by the number of requests already in service or waiting for service.

• A mixed workload is a combination of the above workload classes.

Although these terms hark back to the historical application of queueing the-
ory to time-share computers and banking systems, they are still very useful
because they force you to think about what type of workload you are trying
to represent in your performance analysis with PDQ (see Chap. 6).

CPU Server Disk

Online Wi-Fi Users

Wi-Fi LAN

Fig. 3.17. Wireless networked compute-server architecture

3.7.2 Baseline Analysis

The computer system we investigate consists of the single processor compute-
server shown in Fig. 3.17. It supports 25 online users simultaneously sharing
a server that is also running 10 batch tasks. A batch task is represented by
a closed workload with zero think time Z = 0. The corresponding queueing
circuit for this wireless compute-server architecture is shown in Fig. 3.18. The
100Base-T wireless network has been determined not to be a bottleneck and
therefore is not included in the performance model. The concurrent workloads
are depicted schematically in black for interactive work and in grey for batch
work. The measured performance metrics for the batch and online workloads

146 3 Queueing Systems for Computer Systems

CPU server

N, Z

Batch work

Online work

Disk storage

Fig. 3.18. Queueing circuit for wireless compute-server architecture

are summarized in Table 3.2. We use the MVA algorithm incorporated into
PDQ to do the performance analysis but simply report the results for now.
The actual PDQ model in Perl can be found in Sect. 6.7.9 in Chap. 6.

First, we consider a single-class aggregated workload. Then, we repeat the
analysis with a multiclass workload, where each of the online and batch com-
ponents are considered separately at each queueing center.

This sequence mimics what would typically occur in a real performance analysis
study. One would start with an aggregated set of measurements e.g., as might
be obtained on a production system, and then attempt to refine that analysis by
measuring significant workload components that consume resources. Of course,
refining the analysis in this way involves more effort because it requires that
additional performance parameters be measured for each workload component.

Here, we are assuming that those detailed measurements have already been
made for Batch computation and Online users (Table 3.2), and we synthesize
the effect of the aggregate workload from those more detailed measurements
(third column in Table 3.2). In other words, this is the reverse of the sequence
as it would occur in a real study. The data in Table 3.2 show the individual
workload parameters, as well as the aggregated workload synthesized from
those workload components. The aggregate think-time is calculated in the
next section. The aggregate busy times for both the CPU and the disk (bottom
two rows of the table) are the sums of the component busy times.

3.7.3 Aggregate Analysis

Returning to the discussion in Sect. 3.4.6 for multiple workloads in an open
circuit (Fig. 3.11), and applying Little’s law to (3.21) we have:

λkDk = λA
k DA

k + λB
k DB

k , (3.39)

3.7 Multiple Workloads in Closed Circuits 147

Table 3.2. Baseline workload parameters (times in seconds)

Workloads
Parameter Batch Online Aggregate

N 10 25 35
Z 0 30.0 13.27
C 600 476 1076

Bcpu 600.1 47.6 647.7
Bdsk 54.0 428.4 482.4

from which it follows:

Dk =
(

λA
k

λk

)
DA

k +
(

λB
k

λk

)
DB

k . (3.40)

This result states that the total service demand Dk at queueing center k,
subject to arrivals from multiple workload streams A and B, is the weighted
sum of the service demands due to each stream. The weights are given by the
individual stream arrival rates relative to the total arrival rate

λk = λA
k + λB

k . (3.41)

Since λk is equivalent to a single aggregated workload, and that workload
must the same at each queueing center k, we can write:

λagg =
(
λA + λB

)
k

, (3.42)

because λk ≡ λagg, no matter where the arrival streams are measured. Here-
after, we drop the k subscript unless it is needed for clarification.

For the closed circuit in Fig. 3.18, there will be a finite number of processes
belonging to each stream such that:

Nagg = NA + NB , (3.43)

and (3.42) is replaced by

Xagg = XA + XB . (3.44)

Similarly, the total service demand (3.40) at queueing center k becomes

Dagg
k =

(
XA

Xagg

)
DA

k +
(

XB

Xagg

)
DB

k , (3.45)

and the aggregate think-time for interactive workloads is

Zagg =
(

XA

Xagg

)
ZA +

(
XB

Xagg

)
ZB , (3.46)

148 3 Queueing Systems for Computer Systems

where the weights are now expressed in terms of the relative throughputs.
Equation (3.46) follows from the fact that the think-time is a special kind of
service time where the utilization per terminal,

ρZ = XZ = ρA
Z + ρB

Z ,

follows from Little’s law. These weights should not be confused with the visit
ratios defined in Sect. 3.6.2. In particular,

XA

Xagg
+

XB

Xagg
= 1 ,

which is not true for visit ratios.
We are now in a position to apply these aggregation formulas to the com-

ponent data in Table 3.2. The results are as follows:

• Aggregate processes: From (3.43):

Nagg = Nbatch + Nonline

= 10 + 25 = 35.

• Weight factors: We do not have throughput measurements, but we do
have completion counts C, and applying the fundamental definition of
throughput as, X = C/T from Sect. 2.4, we can replace all throughputs
by the appropriate completion counts. Then,

Wbatch =
Cbatch

Cbatch + Conline

=
600
1076

= 0.558 ,

and

Wonline =
Conline

Cbatch + Conline

=
476
1076

= 0.442 .

• CPU service demand: Using the definition of the service time, S = B/C
from Chap. 2, and applying it to (3.45), we have:

Dcpu = Wbatch

(
Bbatch

cpu

Cbatch
cpu

)
+ Wonline

(
Bonline

cpu

Conline
cpu

)
= 0.558 + 0.044
= 0.602 s.

3.7 Multiple Workloads in Closed Circuits 149

• Disk service demand: Similarly, from (3.45) the service demand at the disk
is:

Ddsk = Wbatch

(
Bbatch

dsk

Cbatch
dsk

)
+ Wonline

(
Bonline

dsk

Conline
dsk

)
= 0.050 + 0.398
= 0.448 s.

• Aggregate thinktime: From (3.46) the aggregate think-time is:

Zagg = Wbatch Zbatch + Wonline Zonline

= (0.5576× 0) + (0.4424× 30)
= 13.27 s.

This is the value that appears as an input parameter in Table 3.2.

These values can now be used as input parameters for a single-stream PDQ
model. We postpone the details of that model until Chap. 6. The enthusi-
astic reader, however, will find the Perl code in Sect. 6.7.9. In Table 3.3 we
summarize the important outputs from that PDQ model for the purposes of
comparison with the component-level analysis presented in the next section.

Table 3.3. Performance predictions for aggregate system

Metric Baseline Upgrade

R 8.11 3.31
X 1.64 2.11

The baseline throughput and response time, computed by PDQ, are shown
in the middle column of Table 3.3 for Nagg = 35. These values can be compared
with the PDQ report in Sect. 6.7.9. The aggregate response time can also be
calculated manually as the weighted sum:

Ragg = Wbatch Rbatch + Wonline Ronline . (3.47)

The proposed upgrade involves replacing the current processor with one that
is five times faster. Those results, shown in the rightmost column of Table 3.3,
are produced by rerunning the PDQ model with the appropriate change for
the CPU speed parameter. The predicted impact on response times is plotted
in Fig. 3.19. Based on the bold numbers in Table 3.3, it is clear in Fig. 3.19
that a CPU upgrade would reduce the average response time by about 60%,
if the system were measured with 35 active processes.

150 3 Queueing Systems for Computer Systems

0

1

2

3

4

5

6

7

8

9

0 5 10 15 20 25 30 35

Aggregate number of processes

R
es

po
ns

e
tim

e
(s

)

Agg Baseline

Agg Upgrade

Fig. 3.19. Aggregate workload analysis. Comparison of baseline and CPU-upgrade
performance predicts a 60% general decrease in the average response time for 35
processes

3.7.4 Component Analysis

Next, we repeat the study using a PDQ model with two workload streams:
one for batch processes and the other representing interactive users. In order
to make the comparison with the aggregated workload, it is useful to combine
the performance projections for the batch and online components in the same
plot (Fig. 3.20). This can be done easily within the PDQ program mwl.pl in
Sect. 6.7.9. The outputs of that model are summarized in Table 3.4.

Examining the multiclass projections in Fig. 3.19, we see that the single
class and multiclass projections are in good agreement for the for the baseline
system. The completion time for 10 batch processes is improved by 80%.
However, based on the bold numbers in Table 3.4, the 25 interactive users
suffer more than a 150% degradation in response time! To make the crossover
effects more visible, an enlargement of that region in Fig. 3.20 is shown in
Fig. 3.21.

This striking difference in the performance analysis predictions arises from
the fact that in the aggregated workload, the amount of time each averaged re-
quest spends at the CPU will be diminished significantly by the CPU speedup.
The longer queue will be at the disk. In the two-class performance model,
however, the batch component of the workload is processor bound while the
interactive users are disk bound. Hence, the batch component benefits more
from the processor upgrade by increasing its throughput. Additionally, the in-

3.8 When Is a Queueing Circuit Solvable? 151

0

2

4

6

8

10

12

0 5 10 15 20 25

Component Load

R
es

po
ns

e
Ti

m
e

(s
)

Online Baseline Online Upgrade Batch Baseline Batch Upgrade

Fig. 3.20. Component workload analysis. Comparison of baseline and CPU-upgrade
performance predicts an 80% decrease in batch completion time with 10 processes,
but at the expense of the interactive users. 25 users will see a potentially disasterous
150% increase in their mean response time

teractive users spend some time thinking whereas the batch processes do not.
This results in the interactive users typically finding many batch processes
ahead of them when they reach the CPU queue. They not only do not benefit
from the processor upgrade, they suffer increased contention from the batch
component at the disk.

Table 3.4. Performance predictions for upgraded system

Workload
Batch (10) Interactive (25) Combined (35)

Metric Baseline Upgrade Baseline Upgrade Baseline Upgrade

R 10.79 2.16 3.99 10.11 7.52 3.16
X 0.93 4.65 0.74 0.62 1.67 5.27

3.8 When Is a Queueing Circuit Solvable?

In this section we identify the general rules for the applicability of MVA. In
general, the queueing circuit must be separable or product-form. This means

152 3 Queueing Systems for Computer Systems

1

2

3

0 1 2 3 4 5 6 7 8 9 10

Component Load

R
es

po
ns

e
Ti

m
e

(s
)

Online Baseline Online Upgrade Batch Baseline Batch Upgrade

Fig. 3.21. Enlargement of the crossover region (left hand side) near 5 processes in
Fig. 3.20. Fewer than 5 interacive users show a small improvement in their mean
response time while more than 5 users begin to suffer. Contrast this with batch
completion times which already show a significant improvement in this range of
loads

that it must be possible to evaluate the performance measures of the com-
plete circuit of queueing centers as though each of the centers were evaluated
separately in isolation. The performance of the circuit as a whole is then
constructed by combining these separate solutions.

3.8.1 MVA Is a Style of Thinking

The construction of queueing circuits in PDQ that use the MVA algorithm
can often appear impenetrable to many performance analysts, especially those
familiar with simulation techniques. The reasons for this can be identified as
follows:

Dependency arrows. Although queueing circuits, such as Fig. 3.18, are
conventionally drawn with arrows to represent what look like dependency
arcs representing the flow between the queues, those arrows have no bear-
ing on how PDQ performs its calculations. As you will discover in Chap. 6,
no arrows are present in the Perl code. Why not? The only thing that
matters is the intensity or magnitude of the workloads at each queueing
center. These intensities are scalar quantities, not vectors or tensors. All
associations are made by name. This is both the beauty, and for some,
the mystery of this kind of queueing performance analysis.

3.8 When Is a Queueing Circuit Solvable? 153

Steady state. PDQ performs its calculations as though the queueing circuit
was in equilibrium or steady state. In other words, the circuit has to be
visualized as though requests have been witnessed over a long duration.
Then, the flow of requests resembles a continuous fluid or electric current,
rather than a series of instantaneous fluctuations caused by discrete re-
quests or electrons. Such visualization is easy to say but sometimes hard
to do in practice. This, of course, is the basis of the Arrival Theorem in
Sect. 3.5.1. We expand on this view with respect to the determination of
instantaneous and averaged queue length in Chap. 4.

Servicing policy. You do not tell MVA what service policy to use, MVA
tells you! For example, a server being accessed by two different workload
classes, each characterized by their different service times, cannot be a
FIFO queue. This is because the workload with the shorter service demand
will tend to preempt the other workload. Sections 3.9.1 and 3.9.2 present
examples of this effect in the context of CPU schedulers. The service
policy that is calculated ends up being last-come-first-served with preempt-
resume or LCFS-PRs. Therefore, you need to check what it is that you
are trying to represent in the physical computer system and whether or
not that assumed service policy is being reflected by the MVA algorithm.

In this sense, MVA and its implementation in PDQ are really a style of think-
ing.

3.8.2 BCMP Rules

How can we know when the MVA algorithm is applicable? More formally, a
separable queueing circuit is one which satisfies the following criteria known
as BCMP rules [Baskett et al. 1975]:

In order. Customers are serviced in the order in which they arrive. This
policy was denoted FIFO or FCFS in Chap. 2. The service times are
exponentially distributed. If there are multiple customer classes, they must
all have the same mean service time at a particular queueing center. They
may have different visit counts or visit ratios. Service rate can be load-
dependent, but it can only depend on the total number of customers at
the queueing center and not on the number in any particular customer
class.

Round robin. Denoted RR in Chap. 2. Customers receive a fixed amount of
service time. This time allotment is also known as a quantum when used
in reference to timeshare operating system schedulers, such as those used
in unix. If the customer does not complete service within the allotted
quantum, they return to the end of the queue to await further service.

Processor sharing. Denoted PS in Chap. 2. If there are N customers at the
queueing center, they receive 1/N of their mean service time. Each class
may have a distinct service time distribution. In the limit as N → ∞, the
RR policy becomes the same as the PS policy.

154 3 Queueing Systems for Computer Systems

Delay centers. If an infinite supply of servers is available at a queueing
center, then a queue will never form and there is no waiting time. This
center is also called an infinite server (IS). In the case where the delay
center is associated with human input, such as typing, the service time is
called the think-time.

Preempt-resume priority. In this policy, the current customer (if any) has
its servicing preempted by the newly arriving customer. When that cus-
tomer completes, the server resumes service on the previously preempted
customer. In this sense, the queue acts more like a stack, and we shall
depict it as such in our queueing center diagrams. Also denoted last-come
first-served preempt resume (LCFS-PR).

3.8.3 Service Classes

Requests belong to a particular workload class while enqueued or receiving
service at a center. Requests are permitted to change class according to fixed
probabilities after completion of service. A workload is defined in terms of its
service time distribution and scheduling policy.

• Service time distributions. For FCFS or FIFO queueing centers, the ser-
vice time distribution must be exponentially distributed for all workload
classes.

• State-dependent service. For FIFO queues, the service time can depend
only on the queue length at the center. For PS, LIFO-PR and IS centers,
the service time for a given class can also depend on the queue length
for that class but not that of other classes. The effective service rate of
a subcircuit can depend only on the total number of customers in that
subcircuit.

• Arrival processes. For open circuits, the interarrival period for a workload
class must be exponentially distributed. There cannot be any bulk (group)
arrivals. The arrival rates may be state-dependent. A queueing system
maybe open with regard to certain classes of work and closed with respect
to others.

• Flow balance. For each workload class, the number of arrivals at a center
must equal the number of completions at the center.

• One-step behavior. No two customers finish being serviced at a service
center, arrive into or depart from the queueing system at exactly the same
time.

• Device homogeneity. The service rate at a center does not depend on the
state of the queueing system other than through the total queue length at
the center or the designated workloads queue length. From this assumption
a number of other things follow:
– Single resource possession. A request may not be waiting or receiving

service at two or more centers simultaneously.

3.9 Classic Computer Systems 155

– No blocking. The service is rendered when a request is present and is
not controlled or conditioned by the state of any other queue.

– No synchronization. The interaction among customers or requests oc-
curs only through queueing for a physical resource.

– Fair service. Servers do not discriminate against one workload class
based on the length of queues in other classes.

– Routing homogeneity. Routing patterns between centers have no influ-
ence of the performance measures of the queueing circuit.

The above requirements are needed to ensure that the queueing circuit
can be solved. Obviously, many of them are often violated in real computer
systems. For example, a unix process may fork a child process to be serviced
simultaneously. Blocking and synchronization of requests are commonplace
in application architectures. The skill that needs to be developed for doing
performance analysis is discovering how to construct solvable queueing models
in spite of these apparent technical violations. The remaining chapters in this
book are intended to convey some of that skill by example, but like any skill,
practice makes perfect!

3.9 Classic Computer Systems

We now turn to the application of queueing circuits for the performance anal-
ysis of computer systems.

The simplest closed-circuit queueing model we presented earlier, was first
used by Scherr [1967] to model the Multics time-sharing computer with multi-
ple users (See Appendix B for a chronology). In formal queueing theory, this
model is called the repairman model [Allen 1990]. It also represents a bridge
between the theory of single queueing centers and circuits containing multiple
queues. The repairman model can be adapted to represent the performance
of multiprocessor systems, and we pursue that topic further in Chap. 7.

3.9.1 Time-Share Scheduler

It is possible to construct an elementary queueing model of a unix time-share
scheduler. As depicted in the closed queueing circuit of Fig. 3.22, consider
N unix processes that are either runnable and therefore waiting in the run-
queue, running on a CPU, or suspended for a mean time Z. The association
with the queueing parameters can be summarized as:

Z: Average time spent in suspended state
X: Rate of job completions
S: CPU user time quantum
V : Number of returns visits to run-queue to complete the work
D: CPU user service demand D = V × S

156 3 Queueing Systems for Computer Systems

CPU
(System time)

S

CPU
(User time)

Run-queue

Expired revisit (V)

Z

X

Fig. 3.22. PDQ model of a generic time-share CPU scheduler

In unix parlance [Vahalia 1996], the CPU busy time is partitioned into user
time when the application or program is running, and the system time due to
the execution of kernel code e.g., disk I/O device drivers discussed in Chap. 1.
We need to apportion this service time dichotomy correctly in Fig. 3.22.

The CPU user-time is associated with the service demand at the nodes
servicing the run-queue at the bottom of Fig. 3.22. The CPU system-time
must be assigned to the Z value in the nodes at the top of the diagram. This
accounts for the situation where a unix device driver is furiously burning CPU
system time in the suspended state, but the run-queue length is essentially
zero, and therefore the system load average (see Chap. 4 for a more detailed
discussion of this point) would appear low.

Time-share (TS) operating systems, like unix, Linux, and Windows aim
at providing responsive service to multiple interactive users. Put simply, the
goal is to create the illusion for each user that they are the only one access-
ing system resources. This is to be contrasted with batch scheduling, where
maximum throughput is the goal rather than minimum response time.

The TS scheduler attempts to give all active processes equal access to the
CPU by employing a round-robin processor allocation policy. Put simply, each
process gets a fixed amount of time to run on the processor. This fixed time
is called a service quantum (commonly on the order of 10 ms).

We can also reach a simple understanding of how the unix nice com-
mand [Vahalia 1996] works. Its effect is simply to provide a small bias to the
priority level of a process, which then influences where the process is placed in
the run-queue when it returns after the CPU service time-quantum expires.
In the real operating system, there is actually more than one queue. As we
show in Chap. 6, our simple queueing model can be extended to include such
details.

3.9 Classic Computer Systems 157

3.9.2 Fair-Share Scheduler

The time-share (TS) scheduler described in Sect. 3.9.1 has an inherent loop-
hole that can be exploited under certain conditions. Processes that demand
less than the fixed service quantum at the CPU generally complete processor
service without being interrupted. A process that exceeds its service quan-
tum, however, has its processing interrupted and is returned toward the back
of the run-queue to await further CPU time. A natural consequence of the TS
scheduling policy is that processes with processing demands that are shorter
than the time quantum are favored over processes with longer demands be-
cause they tend to be preempted when their service quantum expires.

Herein lies a loophole. The unix scheduler is biased intrinsically in favor
of a greedy user who runs many short-demand processes. This loophole is not
a defect, rather it is a property of the round-robin scheduler that implements
time-sharing, which in turn guarantees responsiveness to the shorter process-
ing demands associated with multiple interactive users. One way to close this
loophole is to employ a scheduler that implements a fair share scheduling
policy [See Vahalia 1996, Chap. 5]. In contrast to TS, the fair share (FS)

Na, Za

Da/Ea

Xa

Nb, Zb

Db/Eb

Xb

Fig. 3.23. A queueing model of the fair share scheduler for user classes Na and
Nb with respective entitlements Ea and Eb each running on their own virtual CPU
with an effective service demand DFS

a and DFS
b defined by (3.48)

scheduler has two levels of scheduling: process level and user level. Process-
level scheduling is essentially the same as that in standard unix, and nice
values can be applied there as well. The user-level scheduler is the new com-
ponent, which can be thought of as sitting on top of the TS scheduler in order
to make associations between users and the processes they own. Process ser-
vice demands are compared with resource entitlements granted to users by
the system administrator via the literal allocation of resource tokens called
shares. In this way, resource consumption can be partitioned and constrained

158 3 Queueing Systems for Computer Systems

in a fair manner, thereby removing the round-robin loophole present in the
TS scheduler.

In terms of queueing circuits, the FS scheduler can be thought of as follows.
For each user class or group of users (Na, Nb, Nc, . . .) with resource entitlement
(Ea, Eb, Ec, . . .), the FS scheduler allocates to each of them a virtual CPU such
that their effective service demand (DFS

a , DFS
b , DFS

c , . . .) is their actual service
demand scaled by their respective entitlements. For class (a) users, we could
write specifically:

DFS
a =

DActual
a

EFS
a

, (3.48)

and similarly for each of the other classes. Figure 3.23 depicts the correspond-

Table 3.5. Some unix operating systems that implement fair share scheduling

O/S Vendor Open Source Fair Share Scheduler

AIX IBM WorkLoad Manager (WLM)
FreeBSD www.freebsd.org/ Proportional Share (PS)
HP-UX HP Process Resource Manager (PRM)
Irix SGI SHARE II
Multiple www.supercluster.org/ Maui
Solaris Sun Solaris Resource Manager (SRM)

ing queueing circuits, and this provides a way to succinctly state the key prin-
ciple of operation of fair share scheduling [Gunther 1999]. We see that each
group of users appears to have their own TS scheduler with a virtual CPU
that determines the actual responsiveness of the system. The greater their
entitlement, the shorter will be their effective service time at the CPU and
vice versa. Hence, the system will appear most responsive to those users who
have been granted the greatest entitlement to resources. Table 3.5 provides a
list of operating systems that implement FS scheduling.

3.9.3 Priority Scheduling

In our discussion of queues so far, we have generally assumed that the service
policy is either FIFO (FCFS) or preemptive due to service demands that differ
markedly. The FIFO assumption is valid for single workloads because we have
assumed each request or customer has the same average service demand. If
there are multiple workload classes, distinguished by their service demands,
the server behaves as if it is following a last-come-first-served-preempt re-
sume (LCFS-PR) policy. In more realistic situations these assumptions can
be less than satisfactory and we need to include the effects of explicit priority
scheduling. We demonstrate how such explicit priorities can be implemented
within the queueing paradigms we have discussed in the last two chapters.

3.9 Classic Computer Systems 159

CPUProd

Disk1

Dev

Disk2

Fig. 3.24. The physical CPU and disks belonging to the central subsystem of
an otherwise closed circuit (not shown) servicing the Production and Development
workloads

The technical approach is a variant of the method developed in Sect. 3.4.6
for determining the response time at an open queue subjected to multi-class
arrivals.

Assume for simplicity that there are two workload classes, Production and
Development. In the current time-share system (Fig. 3.24), Production is not
meeting its subsecond service level objectives for average response times. This
situation can be corrected by giving Production higher priority at the CPU.
We want to make performance estimates of the impact on the response times
of both workloads.

We proceed by first building the no-priority performance model in Fig. 3.24
and calibrate it against the measured demands, utilizations, and response
times. A numerical example is given in Example 3.7.

Physical
CPU

Prod

Disk1

Dev
Disk2

Virtual
CPU

Fig. 3.25. Same diagram as Fig. 3.24 but with the high-priority Production work-
load executing on the physical CPU and the lower priority Development workload
executing on a virtual CPU with inflated service demand given by (3.49)

We next determine the utilization ρprod
cpu of the Production workload at the

CPU. We then construct the priority model in Fig. 3.25, which allows Pro-
duction to have exclusive access to the physical CPU and introduces a virtual

160 3 Queueing Systems for Computer Systems

CPU to run only the Development workload. Although there is another CPU,
albeit a virtual CPU, there is a cost to Development. The service demand on
virtual CPU,

D̃dev
cpu =

Ddev
cpu

1 − ρprod
cpu

, (3.49)

is inflated by ρprod
cpu , the utilization from the Production workload. Note the

similarity with (3.22) and (3.48).

Example 3.7. With 15 Production processes and 20 Development workstations
having respective service demands: Dprod

cpu = 300 ms and Ddev
cpu = 1000 ms, the

average Production response time of 2.69 s is above the acceptable subsecond
service level agreement. Development response time is acceptable at 8.19 s.
We apply (3.49) to determine the impact of giving Production a higher CPU
priority. As the results in Table 3.6 indicate, explicitly giving higher priority
to Production does not penalize Development significantly. The corresponding
PDQ model is presented in Sect. 6.7.10 of Chap. 6. ��

Table 3.6. Comparison of response times (in seconds) together with the percentage
differences when high priority is given to the Production workload

Work No High Percent
stream priority priority difference

Production 2.69 0.62 + 77
Development 8.19 8.66 -6

3.9.4 Threads Scheduler

The main difference between a threaded scheduler and the schedulers discussed
in Sects. 3.9.1 and 3.9.2 is that the number of available threads corresponds
to a finite resource in the presence of requests that may be unbounded (open
circuit), such as would be the case for Internet-based traffic. Although a finite
resource is closer to the commonly understood notion of a buffer, this is some-
thing simple queueing models do not accommodate, as we explain further in
Sect. 3.10. As depicted in Fig. 3.26, idea is to treat the finite resource as a
submodel, calculate its effects on various performance metrics (e.g., through-
put) independently, and then use those results to determine the impact on the
composite model.

The submodel looks exactly like the TS model of Sect. 3.9.1 except that
it refers to service demands that operate at a finer time granularity than
generic unix processes. Therefore, the submodel can be solved as a separate
Perl subroutine in PDQ. We leave the details of how this submodel decoupling
works until Chap. 6.

3.10 What Queueing Models Cannot Do 161

Internet Requests Responses

UNIX
Processes

Listen queue

Multi-threaded Server

Blocked

CPUs

Runnable Running

Threads

Fig. 3.26. A queueing model of threads-based scheduler showing the composite
model with the load-dependent server indicated by an arrow. The details of the
load-dependent server are determined by the threads submodel shown inside the
exploded view (dashed boundary)

3.10 What Queueing Models Cannot Do

The material presented in this chapter is limited by the assumptions that
have been invoked in order to obtain results that are useful in practice. With
knowledge comes the responsibility of being careful how it gets applied.

Blocking: In the preceding discussions, we have assumed that queue lengths
can be arbitrary. In real computer systems, however, queues or buffers
often require allocation of a finite amount of storage. When a finite buffer
becomes full, it may inhibit or block processing at other resources. Put
differently, the service rate at a particular queueing center depends on
the state (queue lengths) of the entire circuit. Since this situation lies
outside the BCMP Rules, the separability assumption is lost. Various
approximation have been devised.

Bulk arrivals: Arrivals occur in batches or groups. This is a common phe-
nomenon in communication systems with so-called bursty traffic marked
by long periods of quiescence punctuated by bursts of heavy traffic. Bulk
arrivals can be modeled under certain restricted assumptions such as ex-
ponential distribution of group arrivals.

Contention resolution: Networks such as ALOHA and Ethernet incorpo-
rate sophisticated service disciplines that apply back-off and retry algo-
rithms under heavy traffic conditions. These algorithms are not easy to
render using queueing models [Gunther 2000a, Part III].

162 3 Queueing Systems for Computer Systems

Fork/Join primitives: Forking child processes is used to achieve certain
kinds of process-level parallelism. The join primitive is used to synchronize
the completion of the previously forked processes. Prima facie, forking
children violates the separability assumption of job independence.

Game-theoretic strategies: Cheating, bribery, and baulking.
Load-dependent arrivals: Computer systems with adaptive load-balancing

strategies that shepherd incoming tasks to one of a number of under-
utilized resources are difficult to model with queueing circuits. See Sect. 3.9.4
and Chap. 6.

Mutual exclusion: In distributed computer systems, several tasks attempt-
ing to access a common resource may be excluded while one task has
possession. This policy can be achieved with such primitives as locks or
combining networks. For example, only one task can acquire a lock to
update a database record. This effect is not easy to model with queueing
circuits.

Non-exponential service times: A major requirement for separability of
queueing circuits is service times that are exponentially distributed. It has
been demonstrated that MVA techniques are robust to mild departures
from this assumption. This follows from the BCMP rules observation that
performance measures such as utilizations and response times are deter-
mined by the mean of the service time only and not the higher moments.
Accuracy of queue length-dependent measures such as response time may
be more sensitive to this assumption.

Queueing defections: This is the sort of thing that happens in the grocery
store. A customer gets impatient with the service rate of the current queue
and defects to one that appears to be moving faster (see Chap. 2). A sim-
ilar strategy appears in certain computer networks. Essentially, a packet
carries timeout information on how long it will persist in any queue. After
that time, the packet is dropped from the queue under that assumption
that it has already been retransmitted by the source and received service
elsewhere in the network.

Response-dependent arrivals: This is similar to the situation for Queue-
ing Defections except that packet timeout and packet dropping is missing.
Rather, the source just retransmits the packets. This in turn can cause
further congestion at already congested resources. Even worse, such a pos-
itive feedback loop can make the entire system unstable to large transient
fluctuations, causing sudden escalation in response times.

Sharing Finite Resources: Example of such computer resources include
main memory, virtual memory, and networks.

Simultaneous resource possession: An example of this effect is known as
asynchronous I/O in computer systems. The job continues to compute
while having issued a request to the I/O subsystem. In this sense, the job
is simultaneously holding more than one resource and is a violation of
the job independence assumption. This is difficult to model in queueing

3.11 Review 163

circuits, but can sometimes be addressed with an appropriate choice of
request granularity and mixed workload models.

Think time: This concept of a computer job waiting for human input from
a terminal is becoming arcane in an era where modern workstations are
based on window interfaces that allow a moderate degree of interactive
concurrency to take place.

Transient analysis: As mentioned in Sect. 1.8.4, this is a very difficult prob-
lem that can be handled to some degree within the context of queueing
circuit models. See [Gunther 2000a, Part III] and [Trivedi 2000] for differ-
ing approaches to this problem.

Concurrency and synchronization have become widespread with the advent
of distributed computer systems. We shall show how these difficulties can be
addressed in the context of client/server computer systems in Chap. 9.

3.11 Review

In this chapter we extended the characterization of single queueing centers to
include a flow of customers or requests through a circuit of queues. This was
necessary because real computers involve more than one subsystem, e.g., CPU,
memory, and I/O subsystems. We discussed both series and parallel circuits
of queues that can be both open and closed. This also includes possibility of
flows feeding back into a queue. We also saw that flows of requests can be
merged into a single queue as well as how they can split into multiple flows
once they have been serviced.

For open-circuit queues, the solution is generally straightforward when the
centers are M/M/m; each center can be solved separately, and the response
time is the sum of the individual response times for each center. Jackson’s
Theorem guarantees this solution technique even although the arrivals do not
necessarily conform to a Poisson process.

Closed-circuit queues are complicated by the state of each queueing center
being dependent of the state of all the other queueing centers in the circuit.
The Arrival Theorem provides a way to solve this problem iteratively for
each value of N and gives rise to the Mean Value Analysis (MVA) algorithm.
In general, MVA can be applied to any circuit of queues that obey the so-
called BCMP rules. The MVA formulas also provide a useful way of bounding
performance.

We examined queueing circuits where more than one workload is ser-
viced. This is necessary because many computer systems, especially appli-
cation servers, run more than one task at a time. Finally, we showed how
queueing circuits can be applied to some classic computer systems viz. time-
share scheduling, fair-share scheduling, time-share with priority scheduling,
and threaded servers.

164 3 Queueing Systems for Computer Systems

Exercises

3.1. Use the visit ratios in Example 3.5 to prove that the branching probabil-
ities must be p = 0.20 and q = 0.60.

Xcpu

V

X

CPU

DiskA

DiskB

XdiskA

XdiskB

p

Vcpu

VdiskA

VdiskB

q

Fig. 3.27. Closed queueing circuit for Exercise 3.2

3.2. Figure 3.27 shows a closed queueing circuit with routing probability p
returning some faction of serviced reuqests to users and routing probability
q belonging to requests going to disk A. The visit ratios are: Vcpu = 181,
VdkA = 80 and VdkB = 100.
(a) Show Vcpu = 1 + VdkA + VdkB .
(b) Show p = 1/Vcpu.
(c) Show q = VdkA/(Vcpu − 1).
(d) Show the branching ratios p + q �= 1.

CPU
server

A

Disk
storage

B

Fig. 3.28. Open queueing circuit for Exercise 3.3

3.3. Figure 3.28 shows an open queueing circuit with two workload streams
denoted by the arrivals λA and λB .

Stream A Stream B
Vcpu = 10.0 Vdsk = 9.0 Vcpu = 5.0 Vdsk = 4.0
Scpu = 0.10 Sdsk = 0.333 Scpu = 0.4 Sdsk = 1.0
Dcpu = 1.0 Ddsk = 3.0 Dcpu = 2.0 Ddsk = 4.0
λA = 0.158 λB = 0.105

3.11 Review 165

Use the tabulated circuit inputs to solve for the residence times, queue lengths,
and response times for both workloads.

3.4. Networked Storage. Two storage arrays reside on a network to service
aggregate I/O traffic of 600,000 physical disk I/Os per h. One storage array is
faster than the other. The fast array takes 5 ms to complete an I/O operation,
the slow array takes 15 ms. What fraction of the total I/O traffic should go
to the fast array in order to minimize the average response time of an IO
operation?

4

Linux Load Average—Take a Load Off!

4.1 Introduction

The term load means different things to different people. For example, it might
imply the number of active users or throughput to a system administrator,
whereas we saw in Chap. 2 that it tends to imply utilization to a performance
analyst.

A well-known indicator of the “load” on a unix server is the load average
reported by a variety of unix shell commands. But which of the possible
definitions of load is used in the load average report? Moreover, where and
how is the load average calculated, and how does it relate to the queueing
theory concepts presented in Chaps. 2 and 3? This chapter, which is based on
a personal detective story, endeavors to address all these questions.

Although the load average appears on most unix systems, the source code
for those unix kernels is usually proprietary and therefore not available for
public inspection. A major exception is the Linux kernel, where the source
code is not only annotated (see e.g., [Bovet and Cesati 2001]), but it is avail-
able online as an HTML document (lxr.linux.no/blurb.html) complete
with cross-reference hyperlinks for easy navigation and enhanced readabil-
ity. We therefore refer mostly to Linux code throughout this chapter while
recognizing that similar implementations of the load average metric exist on
unix kernels. Microsoft Windows 2000r© does not have a formal load average
metric, although it does monitor the processor queue length.

In this chapter we explore how the load average performance metric is
calculated by several different unix shell commands. The details are presented
with reference to the Linux operating system because that kernel source code
is available online. For those readers not familiar with the formal queueing
concepts discussed in Chaps. 2 and 3, this is a good place to start because, as
you will see, the load average is related to the average size of the run-queue.

A function called CALC LOAD contains the central algorithm. It computes a
special time-dependent average of the run-queue size using fixed-point arith-
metic. The reported 1-, 5-, and 15-min load averages correspond to three

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_4, © Springer-Verlag Berlin Heidelberg 2005

168 4 Linux Load Average—Take a Load Off!

different weighting factors which put more emphasis on the most recent run-
queue samples than older samples.

Finally, we look at some novel extensions of the conventional load aver-
age metrics that can provide better visual trend information and forecasting
for distributed workloads running on computational GRIDs. We begin our
journey by reviewing how the load average is typically reported.

4.1.1 Load Average Reporting

The load average comprises three metrics that appear in the ASCII output of
certain unix operating system commands. For example, it appears as part of
the uptime or network ruptime command:

[pax:~]% uptime

9:40am up 9 days, 10:36, 4 users, load average: 0.02, 0.01, 0.00

On Linux systems it appears as part of the procinfo command:

[pax:~]% procinfo

Linux 2.0.36 (root@pax) (gcc 2.7.2.3) #1 Wed Jul 25 21:40:16 EST 2001

Memory: Total Used Free Shared Buffers Cached

Mem: 95564 90252 5312 31412 33104 26412

Swap: 68508 0 68508

Bootup: Sun Jul 21 15:21:15 2002 Load average: 0.15 0.03 0.01

...

So, the metric Load average: 0.15 0.03 0.01 we are interested in contains
three numbers. Why are there three numbers and not just one? The usual
way to find out on a unix system is to read the relevant manual pages.

[pax:~]% man "load average"

No manual entry for load average

This happens because the load average is not its own command. If, how-
ever, you read the unix online manual (“man”) pages for the uptime or
procinfo command, you quickly find that the three numbers correspond to
the 1-minute, 5-minute, and 15-minute averages. But averages of what?

For further explanation, we turn to some of the many available unix ref-
erence books. For example, Peek et al. [1997, p. 726] warn:

The load average tries to measure the number of active processes
at any time. As a measure of CPU utilization, the load average is
simplistic, poorly defined, but far from useless.

As we shall see shortly, the load average is not a measure of CPU utilization
at all. But what is meant by active processes? Cockcroft and Pettit [1998, p.
229] are a little more explicit:

4.1 Introduction 169

The load average is the sum of the run queue length and the number
of jobs currently running on the CPUs. In Solaris 2.0 and 2.2 the load
average did not include the running jobs but this bug was fixed in
Solaris 2.3.

However, they also indicate that the implementation of the load average cal-
culation may not always be correct if quality assurance is not properly applied
with each new release of the operating system.

Fig. 4.1. Load average presented graphically as a time series over a 24-hour window.
This screenshot shows three overlapping curves correspond to regularly scheduled
samples of the 1-minute, 5-minute, and 15-minute load averages plotted in different
colors

The quality of data presentation can be improved immensely by employing
a graphical representation to display sampled load average data as a time
series, like that produced by the ORCA tool (www.orcaware.com/orca/docs/
orcallator.html) in Fig. 4.1. The relative significance of each load average
sample can then be viewed across a broad window of time, in a way that is
not possible with the generic unix performance tools.

4.1.2 What Is an “Average” Load?

So, it seems that load, in this context, means run queue length. But what is
an “average” load? Peek et al. [1997, p. 720] tend to answer this question with
a question:

What’s high? As usual, that depends on your system. Ideally, you’d
like a load average under, say, 3, Ultimately, “high” means high
enough so that you don’t need uptime to tell you that the system is
overloaded.

They continue:

170 4 Linux Load Average—Take a Load Off!

. . .different systems will behave differently under the same load av-
erage. . . .running a single CPU-bound background job . . .can bring
response to a crawl even though the load avg remains quite low.

Blair Zajac, author of the ORCA tool (Fig. 4.1), points out (www.orcaware.
com/orca/docs/orcallator.html#processes_in_run_queue_system_load):

If long term trends indicate increasing figures, more or faster CPUs
will eventually be necessary unless load can be displaced. For ideal
utilization of your CPU, the maximum value here should be equal to
the number of CPUs in the box.

This is a nice statement because it recognizes that the run queue can be
serviced by more than one processor. If the load average of all running pro-
cesses exactly matches the number of physical processors, then queueing is
unlikely to occur. That is an ideal state that may be achieveable with parallel
or batch processing. For general purpose workloads, however, we know from
the M/M/m queue analysis in Chap. 2 that some amount of queueing is usu-
ally quite acceptible because it has a negligible impact on performance. The
average run-queue length Q and the average time a process spends in the run
queue R are related by Little’s law Q = λR. At a given CPU utilization, the
sharpness of the knee in the residence time (Fig. 2.17) depends on the num-
ber of physical processors. The relationship with a multiprocessor scheduler
is discussed in more detail in Sect. 4.4.2.

From the diversity of opinions expressed in Sects. 4.1.1 and 4.1.2, we might
reasonably conclude that there is some noticeable confusion. That is because
the load average metric is not your average kind of average. As we shall dis-
cover in this chapter, not only is the load average not a typical kind of average,
it is a time-dependent average, indeed, a special kind of time-dependent av-
erage. We commence our deeper investigations into the nature of the load
average with some controlled performance measurements.

4.2 A Simple Experiment

A controlled experiment was performed over a one-hour period on an otherwise
quiescent single-CPU Linux box. The test comprised two phases:

• Two CPU-intensive processes were initiated in the background and allowed
to execute for 2,100 s.

• The two processes were stopped simultaneously but measurements contin-
ued for another 1,500 s.

The following Perlscript was used to sample the load average every 5 s using
the uptime command.

#! /usr/bin/perl

getload.pl

4.2 A Simple Experiment 171

$sample_interval = 5; # seconds

Fire up 2 cpu-intensive tasks in the background

system("./burncpu &");

system("./burncpu &");

Perpetually monitor the load average via the uptime

shell command and emit it as tab-separated fields.

while (1) {

@uptime = split (/ /, ‘uptime‘);

foreach $up (@uptime) {

collect the timestamp

if ($up =~ m/(\d\d:\d\d:\d\d)/) {

print "$1\t";

}

collect the three load metrics

if ($up =~ m/(\d{1,}\.\d\d)/) {

print "$1\t";

}

}

print "\n";

sleep ($sample_interval);

}

The CPU-intensive workload in the following C code makes references that
can cause cache-line replacement on many machines:

// burncpu.c

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

#define MAXARRAY 100

long int m[MAXARRAY];

double a[MAXARRAY];

int main(void) {

int i;

void StuffMatrices();

StuffMatrices();

for (i = 0; i < MAXARRAY; i++) {

a[i] = a[100 - i] * m[i];

if (i == MAXARRAY - 1) {

i = 0;

}

}

} // end of main

172 4 Linux Load Average—Take a Load Off!

void StuffMatrices () {

int k;

for (k = 0; k < MAXARRAY; k++) {

a[k] = (double) random ();

m[k] = random ();

}

} //end of StuffMatrices

The following (edited) output from the top program confirms that the two
workload instances initiated by the getload script ranked as the highest CPU-
consuming processes.

PID USER SIZE RSS SHARE STAT %CPU %MEM TIME CPU COMMAND

20048 neil 256 256 212 R 30.6 0.0 0:32 0 burncpu

20046 neil 256 256 212 R 29.3 0.0 0:32 0 burncpu

15709 mir 9656 9656 4168 R 25.6 1.8 45:32 0 kscience.kss

1248 root 66092 10M 1024 S 9.5 2.1 368:25 0 X

20057 neil 1068 1068 808 R 2.3 0.2 0:01 0 top

1567 mir 39228 38M 14260 S 1.3 7.6 40:10 0 mozilla-bin

1408 mir 340 296 216 S 0.7 0.0 50:33 0 autorun

1397 mir 2800 1548 960 S 0.1 0.3 1:57 0 kdeinit

20044 neil 1516 1516 1284 S 0.1 0.2 0:00 0 perl

1 root 156 128 100 S 0.0 0.0 0:04 0 init

2 root 0 0 0 SW 0.0 0.0 0:01 0 keventd

3 root 0 0 0 SW 0.0 0.0 0:02 0 kapmd

4 root 0 0 0 SWN 0.0 0.0 0:00 0 ksoftirqd_CPU

9 root 0 0 0 SW 0.0 0.0 0:00 0 bdflush

5 root 0 0 0 SW 0.0 0.0 0:02 0 kswapd

6 root 0 0 0 SW 0.0 0.0 0:00 0 kscand/DMA

4.2.1 Experimental Results

Figure 4.2 shows that the 1-min load average reaches a value of 2.0 after
300 s into the test, the 5-min load average reaches 2.0 around 1,200 s, while
the 15-min load average would reach 2.0 at approximately 4,500 s but the
processes were killed at 2100 s. Electrical engineers will immediately notice
the resemblance to the voltage curve produced by a charging and discharging
RC-circuit. This important analogy will be utilized in Sect. 4.3.4.
Notice that the maximum load is equivalent to the number of CPU-intensive
processes running at the time of the measurements. If there was just a single
process running, you could be forgiven for thinking that load average is a direct
measure of CPU utilization. Our next goal is to explain why the load average
data from these experiments exhibit the characteristics seen in Fig. 4.2. We
begin by looking at the Linux kernel code that calculates the load average
metrics.

4.2 A Simple Experiment 173

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500 3000 3500 4000

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_1

LAD_1

LAD_5

LAD_15

LAD_15

LAD_5

Fig. 4.2. Time series plot of data from load average experiments on a Linux platform

4.2.2 Submerging Into the Kernel

As mentioned in the introduction to this chapter, the source code for the Linux
kernel is available online and this facilitates a studying it in detail. If we look
at the code for the CPU scheduler in lxr.linux.no/source/include/linux/
sched.h, we see the following C function called calc load():

unsigned long avenrun[3];

624

625 static inline void calc_load(unsigned long ticks)

626 {

627 unsigned long active_tasks; /* fixed-point */

628 static int count = LOAD_FREQ;

629

630 count -= ticks;

631 if (count < 0) {

632 count += LOAD_FREQ;

633 active_tasks = count_active_tasks();

634 CALC_LOAD(avenrun[0], EXP_1, active_tasks);

635 CALC_LOAD(avenrun[1], EXP_5, active_tasks);

636 CALC_LOAD(avenrun[2], EXP_15, active_tasks);

637 }

638 }

This is the primary routine for calculating the load average metrics. Essen-
tially, calc load() checks to see if the sample period has expired, resets the
sampling counter, and calls the subroutine CALC LOAD to calculate each of the

174 4 Linux Load Average—Take a Load Off!

1-minute, 5-minute, and 15-minute metrics respectively. The array avenrun[],
and the constant LOAD FREQ used by calc load() are defined elsewhere as:

58 extern unsigned long avenrun[]; /* Load averages */

...

62 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */

The sampling interval used for LOAD FREQ is 5*HZ. How long is that interval?
Every unix or Linux platform has a clock implemented in hardware

(Chap. 1, Sect. 1.3.6). This hardware clock has a constant ticking rate by
which everything else in the system is synchronized. To make this ticking
rate known to the system, it sends an interrupt to the unix kernel on every
clock tick. The actual interval between ticks differs depending on the type of
platform, e.g., most unix systems have the CPU tick interval set to 10 ms of
wall-clock time.

The specific definition of the tick rate is contained in a constant labeled
HZ that is maintained in a system-specific header file called param.h. For the
online Linux source code we are using here, you can see the value is 100 for an
Intel platform in lxr.linux.no/source/include/asm-i386/param.h, and
for a SPARC-based system in lxr.linux.no/source/include/asm-sparc/
param.h. However, it is defined differently for a MIPS processor in lxr.linux.
no/source/include/asm-mips/param.h. The statement:

#define HZ 100

in the header file means that one second of wall-clock time is divided into
100 ticks. In other words, we could say that a clock interrupt occurs with
a frequency of once every 100th of a second, or 1 tick = 1 s/100 = 10 ms.
Conversely, the C macro at line 73:

73 #define CT_TO_SECS(x) ((x) / HZ)

is used to convert the number of ticks to seconds.
The constant labeled HZ should be read as the frequency divisor and not

literally as the SI unit of frequency cycles per second, the latter actually having
the symbol Hz. Thus, 5 * HZ means five times the value of the constant called
HZ. Furthermore, since HZ is equivalent to 100 ticks, 5× 100 ticks = 500 ticks,
it follows that 500 ticks is the same as 500 × 10 ms or an interval of 5 s. So,
CALC LOAD is called once every 5 s, and not 5 times per second as some people
mistakenly think. Also, be careful not to confuse this sampling period of 5 s
with the reporting periods of 1, 5, and 15 minutes.

4.3 Load Calculation

The C macro CALC LOAD does the real work of calculating the load average,
and it is defined in lines 67–70 of the following code fragment:

4.3 Load Calculation 175

58 extern unsigned long avenrun[]; /* Load averages */

59

60 #define FSHIFT 11 /* nr of bits of precision */

61 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */

62 #define LOAD_FREQ (5*HZ) /* 5 sec intervals */

63 #define EXP_1 1884 /* 1/exp(5sec/1min) */

64 #define EXP_5 2014 /* 1/exp(5sec/5min) */

65 #define EXP_15 2037 /* 1/exp(5sec/15min) */

66

67 #define CALC_LOAD(load,exp,n) \

68 load *= exp; \

69 load += n*(FIXED_1-exp); \

70 load >>= FSHIFT;

Several questions immediately come to mind when reading this code:

1. Where do those strange numbers 1884, 2014, 2037 come from?
2. What role do they play in calculating the load averages?
3. What does the CALC LOAD code actually do?

We attempt to address these questions in the subsequent sections. First, we
need to make a brief diversion into the fixed-point representation of numbers.

4.3.1 Fixed-Point Arithmetic

The following, slightly cryptic comment in the code:

50 * These are the constant used to fake the fixed-point load-average

51 * counting. Some notes:

52 * - 11 bit fractions expand to 22 bits by the multiplies: this gives

53 * a load-average precision of 10 bits integer + 11 bits fractional

54 * - if you want to count load-averages more often, you need more

55 * precision, or rounding will get you. With 2-second counting freq,

56 * the EXP_n values would be 1981, 2034 and 2043 if still using only

57 * 11 bit fractions.

alerts us to the fact that fixed-point, rather than floating-point operations
are used to calculate the load average. Since the load average calculations
are done in the kernel, the presumption is that fixed-point arithmetic is more
efficient than floating-point routines, although no explicit justification is given
for that assumption.

Fixed-point representation means that only a fixed number of digits, either
decimal or binary, are permitted to express any number, including those that
have a fractional part (mantissa) following the decimal point. Suppose, for
example, that 4 bits of precision were allowed in the mantissa. Then, numbers
like:

0.1234, −12.3401, 1.2000, 1234.0001

can be represented exactly. On the other hand, numbers like:

176 4 Linux Load Average—Take a Load Off!

0.12346, −8.34051

cannot be represented exactly and would have to be rounded to:

0.1235, −8.3405

As the embedded comment starting at line 54 warns us, too much successive
rounding can cause insignificant errors to become compounded into significant
errors. One way around this is to increase the number of bits used to express
the mantissa, assuming the storage is available to accommodate the greater
precision.

Line 52 of the comment in the kernel source indicates that there are 10
bits allowed for the integer part of the number and 11 bits for the fractional
part called an M.N = 10.11 format. The basic rules of fixed-point addition
are the same as for integers. The important difference occurs with fixed-point
multiplication. The product of multiplying two M.N fixed-point numbers is:

M.N × M.N = (M + M).(N + N) (4.1)

To get back to M.N format, the lower-order bits are dropped by shifting N
bits.

4.3.2 Magic Numbers

There are several fixed-point constants used in the CALC LOAD routine. The
first of these is the number ‘1’ itself, which is labeled FIXED 1 on line 61 of
the kernel code. In the following layout:

←10 bits→ ←− 11 bits −→
0000000001 . 0 0 0 0 0 0 0 0 0 0 0 (a)

1 0 0 0 0 0 0 0 0 0 0 0 (b)
11 10 9 8 7 6 5 4 3 2 1 0 (c)

row (a) shows FIXED 1 expressed in 10.11 format, while the leading zeros
and the decimal point have been dropped from row (b). The resulting binary
digits 1000000000002 are indexed 0 through 11 in row (c), which establishes
that FIXED 1 is equivalent to 211 or 204810 in decimal notation.

Using the C language bitwise left-shift operator (<<), 1000000000002 can
be written as 1 << 11 in agreement with line 61 of the kernel code:

60 #define FSHIFT 11 /* nr of bits of precision */

61 #define FIXED_1 (1<<FSHIFT) /* 1.0 as fixed-point */

Alternatively, we can write FIXED 1 as a decimal integer:

FIXED 1 = 204810 , (4.2)

4.3 Load Calculation 177

to simplify calculation of the remaining constants: EXP 1, EXP 5, and EXP 15,
for the 1-, 5-, and 15 min metrics, respectively.

Consider the 1-min metric as an example. If we denote the sample period
as σ and the reporting period as τ , then:

EXP 1 ≡ e−σ/τ . (4.3)

We have already established that σ = 5 s and for the 1-min metric, τ = 60 s.
Furthermore, the decimal value of EXP 1 is:

e−5/60 = 0.92004441463. (4.4)

To convert (4.4) to a 10.11 fixed-point fraction, we only need to multiply it
by the fixed-point constant FIXED 1 (i.e., ‘1’):

�2048 × 0.92004441463�= 188410 , (4.5)

and round it to the nearest 11-bit integer. Each of the other magic numbers
can be calculated in the same way, and the results are summarized in Table 4.1.

Table 4.1. Default magic numbers for 5-s sampling period

Parameter Seconds 1. exp(−5/τ) Rounded Binary

τ1 60 1884.25 188410 111010111002

τ5 300 2014.15 201410 111110111102

τ15 900 2036.65 203710 111111101012

These results are seen to agree with the kernel definitions:

63 #define EXP_1 1884 /* 1/exp(5sec/1min) */

64 #define EXP_5 2014 /* 1/exp(5sec/5min) */

65 #define EXP_15 2037 /* 1/exp(5sec/15min) */

If the sampling rate was decreased to 2-s intervals, the constants would need
to be changed to those summarized in Table 4.2. These values are seen to be
in agreement with the embedded comment, “With 2-second counting freq, the
EXP n values would be 1981, 2034 and 2043.”

Table 4.2. Magic numbers for a 2-s sampling period

Parameter Seconds 1. exp(−2/τ) Rounded Binary

τ1 60 1980.86 198110 111101111012

τ5 300 2034.39 203410 111111100102

τ15 900 2043.45 204310 111111110112

So far, we can explain where those magic constants come from. They are an
integral part of doing calculations in 10.11 format fixed-point arithmetic.

178 4 Linux Load Average—Take a Load Off!

Now, we would like to understand how the CALC LOAD function actually
uses these constants to determine the load average. From Sect. 4.3, we see
that this macro:

67 #define CALC_LOAD(load,exp,n) \

68 load *= exp; \

69 load += n*(FIXED_1-exp); \

70 load >>= FSHIFT;

comprises lines 67–70. Line 67 is the name of the macro together with its
requisite three parameters load, exp, and n. Line 68 is equivalent to taking
the current fixed-point value of the variable load and multiplying it by a
factor called exp. That new value of load is then added to a term compris-
ing the number of active processes n multiplied by another variable called
FIXED 1-exp in line 69. Line 70 decimalizes the load variable.

However, in Sect. 4.3.2 we also established that exp is equivalent to e−σ/τ

by virtue of (4.3) and FIXED 1-exp is equivalent to 1 − e−σ/τ by virtue of
(4.2) and (4.3). Consequently, the C code in the CALC LOAD macro can be
written in more conventional mathematical notation as:

load(t) = load(t − 1) e−σ/τ + n(t) (1 − e−σ/τ) , (4.6)

where load(t) is the current estimate of the load average, load(t − 1) is the
estimate of the load average from the previous sample, and n(t) is number of
currently active Linux processes. In other words, CALC LOAD is the fixed-point
arithmetic version of (4.6). How it works is best understood by examining
some special cases.

4.3.3 Empty Run-Queue

First, we consider the case where the run-queue is empty, i.e., n(t) = 0. Recall
our definition of queue from Chap. 2 includes not just those Linux processes
that are waiting in the run-queue (runnable), but also those executing (run-
ning) on CPUs.

Setting n(t) = 0 in (4.6) produces:

load(t) = load(t − 1) e−σ/τ . (4.7)

If we iterate (4.7) between t = t0 and t = T we get:

load(T) = load(t0) e−σt/τ . (4.8)

By plotting this function for the three reporting periods τ in Fig. 4.3, we
see that it clearly exhibits time-dependent exponential decay. In other words,
(4.7) is responsible for the fall-off in the observed load between t0 = 2, 100
and T = 3, 600 in Fig. 4.2.

4.3 Load Calculation 179

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_15

LAD_1
LAD_5

Fig. 4.3. Decaying load phase in Fig. 4.2

4.3.4 Occupied Run-Queue

The second special case is one in which the run-queue is consistently occupied
with two processes. Then, the second term dominates in (4.6), and iterating
between t = t0 and t = T produces:

load(T) = 2 load(t0) (1 − e−σt/τ) . (4.9)

Plotting this function in Fig. 4.4 for the three reporting periods (τ) shows
monotonically increasing functions. We see that (4.9) is responsible for the
observed rise in load between t0 = 0 and T = 2, 100 in Fig. 4.2.

Table 4.3. Characteristic rise times for the experiments in Fig. 4.2

Load avg. Time Estimated
parameter constant rise time

τ1 60 300
τ5 300 1500
τ15 900 4500

Having previously noted in Sect. 4.2.1 that the curves in Fig. 4.2 resemble
the voltage characteristic of an RC-circuit, we take that analogy a step further.
In circuit theory, it is known that the rise time is approximately five times
the characteristic time constant τ . In CALC LOAD, τ1 = 60 s, therefore the rise
time can be estimated as 5τ1 ≈ 300 s. The other rise times are summarized
in Table 4.3.

180 4 Linux Load Average—Take a Load Off!

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_5

LAD_15

LAD_1

Fig. 4.4. Rising load phase in Fig. 4.2

4.3.5 Exponential Damping

A common technique used to preprocess highly variable raw data for subse-
quent analysis is to apply some kind of smoothing function to that data. The
general relationship between the raw input data and the smoothed output
data is given by:

Y (t)︸︷︷︸
smoothed

= Y (t − 1) + α︸︷︷︸
constant

⎡
⎣X(t)︸ ︷︷ ︸

raw

−Y (t − 1)

⎤
⎦ . (4.10)

This smoothing function (4.10) is an exponential filter or exponentially-
smoothed moving average of the type used in financial forecasting and other
forms of statistical regression. Such smoothing functions are readily avail-
able in data analysis tools such as: Excel, Mathematica, R, S+. There is also
a Perlpackage called Statistics::DEA (Discontiguous Exponential Averaging)
available on CPAN.

Although the parameter α is commonly called the smoothing constant, we
prefer to call it the correction constant, and (1 − α) the damping factor. The
magnitude of the correction constant (0 ≤ α ≤ 1) determines how much the
current forecast must be corrected for error in the previous forecast iteration.
The CALC LOAD algorithm in (4.6) can be rearranged to read:

load(t) = load(t − 1) + (1 − e−σ/τ) [n(t) − load(t − 1)] , (4.11)

which reveals that (4.11) is identical to (4.10) if we choose the correction
factor to be α = 1− exp(−σ/τ). The corresponding damping factors for each

4.3 Load Calculation 181

of the three load average metrics are shown in Table 4.4 and a comparison
with the experimental data from Sect. 4.2 is shown in Fig. 4.5.

More detailed views for the rising phase are shown in Fig. 4.6(a) and for
the falling phase in Fig. 4.6(b). Notice that the exponential damping factor

Table 4.4. Damping factors for CALC LOAD.

Timebase Damping Correction

parameter factor e−σ/τ factor α

τ1 0.9200 0.0800 (≈ 8%)
τ5 0.9835 0.0165 (≈ 2%)
τ15 0.9945 0.0055 (≈ 1%)

for τ1 agrees with the value in (4.4) to four decimal places. The 1-min load
average metric has the least damping, or about 8% correction, because it
is the most responsive to instantaneous changes in the length of the run-
queue. Conversely, the 15-min load average has the most damping, or only
1% correction, because it is the least responsive metric.

0.00

0.50

1.00

1.50

2.00

2.50

0 500 1000 1500 2000 2500 3000 3500 4000

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_1

LAD_1
LAD_5

LAD_15

LAD_5

LAD_15

EMA_15

EMA_15

EMA_5

EMA_1

EMA_1

EMA_5

Fig. 4.5. Comparison of the exponentially damped moving average model given by
(4.11) with the complete set of 1, 5, and 15 m experimental data in Fig. 4.2

Pulling together all the diverse pieces from Sect. 4.3, we see that CALC LOAD
actually computes the exponentially-damped moving average of the run-queue
length using 10.11 fixed-point format.

182 4 Linux Load Average—Take a Load Off!

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

LAD_5

LAD_15

LAD_1

EMA_1

EMA_5

EMA_15

(a) Rising load phase (Fig. 4.4)

0.00

0.50

1.00

1.50

2.00

2.50

0 100 200 300 400 500 600

Elapsed Time (s)

Lo
ad

 A
ve

ra
ge

EMA_15

EMA_1

EMA_5

LAD_15

LAD_1
LAD_5

(b) Decaying load phase (Fig. 4.3)

Fig. 4.6. Detail of model fit for both rising and falling experimental phases

4.4 Steady-State Averages 183

There is evidence that the choice of an exponentially damped moving average
for the unix load average may have been inspired by similar instrumenta-
tion developed for the experimental multiuser time-share computer system
called Multics [Saltzer and Gintell 1970]. Multics is often viewed as an his-
torical precursor to the unix operating system (Appendix B). It is also the
same computer system for which Scherr [1967] developed the first computer
performance model discussed in Sect. 3.9.1.

4.4 Steady-State Averages

As mentioned in Sect. 4.3.5, smoothing is used in an effort to reveal trends
in data that are otherwise highly variable or noisy. The smoothing technique
incorporated into CALC LOAD is an exponentially damped moving average of
the sampled run-queue data. The usual arithmetic average is just the sum

5

10

15

20

0 20 40 60 80 100 120

Time Steps

Q
ue

ue
 L

en
gt

h

Fig. 4.7. Different types of average runqueue length. The dotted curve is the run-
queue length measured at each time step or sample period. The horizontal line shows
the arithmetic time average Q taken over the entire period. The black curve (middle)
is the corresponding moving average with lag 4. The thick black curve (top) is the
corresponding exponentially damped moving average with a damping factor chosen
to match the 15-minute Linux load average

of all the data points normalized by the number of data points. The moving

184 4 Linux Load Average—Take a Load Off!

average is the arithmetic average with lag k (Fig. 4.7). For example, if k = 4,
successive groups of 4 data points are summed and divided by 4.

This method works well if the data contain no obvious trends or cyclic
patterns. The higher the value of the lag k, the greater the smoothing effect.
Conversely, the arithmetic average can be viewed as the moving average with
the lag equal to the number of data points. The exponentially damped moving
average is applicable if the data contains no trends or cyclic patterns and the
most recent data points are more significant than earlier points. In this sense,
the exponential damping factor (1 − α) acts as a weighting factor.

4.4.1 Time-Averaged Queue Length

How do these various averaging definitions relate to the kind of averages dis-
cussed previously in Chaps. 2 and 3? Consider the load average displayed as
a time series in Fig. 4.1 over a long measurement period, e.g., T = 24 h. A
portion of that time series would appear something like Fig. 2.8 when viewed
at higher resolution, and that time series in turn looks like a series of vertical
columns. Each column sits at a position on the time-axis that corresponds
to a sample step of width Δt. The value of the queue length Q(Δt) at any
sample time step is given by the height of that column.

The subarea contained in a column is given by Q(Δt) × Δt (i.e., height
multiplied by width). Adding up all these column subareas

∑
Q(Δt) × Δt

gives the total area under the curve. The ratio of this total area to the total
measurement period T is the time-averaged queue length Q:∑

Q(Δt)× Δt

T
→ Q . (4.12)

If Δt → 1 then T → k (the total number of sampled points), then Q is the
same as the arithmetic average that appears in Little’s law (2.14) defined in
Chap.2.

4.4.2 Linux Scheduler Model

The steady-state run-queue of the Linux time-share scheduler can be modeled
along the lines discussed in Sect. 3.9.1. In Fig. 4.8, each of the N Linux
processes are in one of the following scheduler states:

1. Runnable, and therefore waiting in the run-queue for CPU service
2. Running, and therefore executing on a CPU
3. Suspended or uninterruptible, in Linux parlance [Bovet and Cesati 2001,

p. 67], for some other external condition

The queueing parameters of Chap. 2 can be associated with this scheduler
model according to Table 4.5. The relationship between the average queue
length Q and the number of active processes N is given by:

4.4 Steady-State Averages 185

CPU
(System time)

S

CPU
(User time)

Run-queue

Expired revisit (V)

Z

X

Fig. 4.8. Simple closed queueing model of the Linux scheduler

Table 4.5. Queueing parameters for the model depicted in Fig. 4.8

Parameter Meaning for scheduler

N Total number of active processes
Z Average time a processes is suspended
X Rate of CPU completions
S CPU time quantum measured in Ticks.
V Number of CPU visits required to complete the work
D Total CPU execution demand D = V × S measured in

ticks or ms
m Number of CPU processors
Q Average run-queue length (not the instantaneous length)

Q = N − X Z . (4.13)

This is actually a variant of Little’s law (2.14) where the arrival rate λ has
been replaced by the CPU throughput X. Since only a finite number of Linux
processes are active in the system, the scheduler can never have more than N
requests enqueued. On average, however, there will be less than N processes
enqueued because some of them will be in a suspended state. The average
number in the suspended state is the product of how long Z they spend in the
state and the rate X at which they become suspended. This is yet another
variant of Little’s microscopic law (2.15).

The length of the waiting line Qw is distinct from the queue length Q. In
general, it will be a function of the number of CPUs in the system and how
busy they are:

Qw = Q − ρ , (4.14)

where ρ = U/m is the per-CPU utilization. Unfortunately, because of the
feedback nature of the closed queueing model in Fig. 4.8, it is not easy to de-
termine (4.13) or (4.14) without making the model. This can be accomplished
most easily by modifying the code for repair.pl in Sect. 2.8.3 to become
timeshare.pl.

186 4 Linux Load Average—Take a Load Off!

The experiments of Sect. 4.2 were performed on a uniprocessor (i.e., m =
1) with two processes (i.e., N = 2) and essentially zero suspension time.
In what follows, we shall assume that the workload is CPU intensive with
Z = 1 ms and the CPU execution time is D = 5 s. Using these input values,
the timeshare.pl model produces the following modified output:

M/M/1//2 Time-Share Model

CPU processors (m): 1

Total processes (N): 2

Execution time (D): 5.0000

Suspended time (Z): 0.0010

Execution rate : 0.2000

Utilization (U): 1.0000

Utilzn. per CPU (rho): 1.0000

Average load (Q): 1.9998

Average in service : 1.0000

Average enqueued (Qw): 0.9998

Throughput (X): 0.2000

Waiting time (W): 4.9990

Completion time (R): 9.9990

We see that the model predicts the CPU should run at 100% busy and the
average load is Q = 1.9998, showing that one process is running while the
other is waiting but runnable in the run-queue. Here, Q is not exactly 2
because some small amount of time (i.e., 1 ms) is spent in a suspended state.
On average, any process will find the other process ahead of it at the CPU,
and therefore will have to wait for 5 s before receiving service at the CPU.
All this is in good agreement with what we observed on the experimental
platform in Sect 4.2.

M/M/2//2 Time-Share Model

CPU processors (m): 2

Total processes (N): 2

Execution time (D): 5.0000

Suspended time (Z): 0.0010

Execution rate : 0.2000

Utilization (U): 1.9996

Utilzn. per CPU (rho): 0.9998

Average load (Q): 1.9996

Average in service : 1.9996

Average enqueued (Qw): 0.0000

Throughput (X): 0.3999

Waiting time (W): 0.0000

Completion time (R): 5.0000

4.5 Load Averages and Trend Visualization 187

How would things change if we added another CPU? The answer can be deter-
mined by simply changing the number of processors to m = 2 and rerunning
the model. We see that the average load Q = 1.9996 is the same, but now the
number enqueued is zero because each process can find its own CPU; a result
that supports the comment of Zajac in Sect. 4.1.2.

4.5 Load Averages and Trend Visualization

Finally, we evaluate how well the standard load average does as a trend indi-
cator. The intent of the load average metrics is to provide information about
the trend in the growth of the length of the run queue. That is why it reports
three metrics rather than one. The three metrics try to capture some historical
information, viz. the run-queue length as it was 1, 5, and 15 min ago.

4.5.1 What Is Wrong with Load Averages

We concur with the comments of Peek et al. [1997] in Sect. 4.1.1 that the load
average is simplistic and poorly defined. In fact, we take the position that
three major flaws can be identified in the conventional load average metrics
when it comes to presenting trend information to the performance analyst:

1. The three metrics are reported at some random instant in time whenever
the corresponding shell command is invoked. They represent a snapshot
or a slice in time of the averaged loads at that reporting instant. Imagine
a vertical line at some arbitrary location on the time axis intersecting the
three curves in Fig. 4.2.

2. The reporting order is inconsistent with time flow conventions. The 1-, 5-,
15-min metrics correspond to recent, past, and distant past averages. For
trending purposes, however, time conventionally flows from left to right
along the x-axis, e.g., in Fig. 4.2. It would be preferable, therefore, to have
the reporting order of the metrics reversed.

3. The three load averages are reported at unequal intervals of time. This
lack of uniformity makes trend projection awkward. A better choice might
be: 0, 5, 10, 15 min where the ‘0’ metric corresponds to now (no damped
average).

These shortcomings lead us to consider a visual representation of the load
average metrics.

4.5.2 New Visual Paradigm

Figure 4.9 shows two possible graphical representations of the load average
sampled over a period of T = 300 time steps. The sampled data are for a
workload that initially causes the load average to increase abruptly and then

188 4 Linux Load Average—Take a Load Off!

decay away more slowly. Figure 4.9(a) shows the conventional load average
triplet of numbers in 1, 5, and 15 m order, while Fig. 4.9(b) shows the same
sequence with the triplet ordering reversed, i.e., 15, 5, and 1 m.

0 2 4 6 8 10 12 14
7.8

8
8.2
8.4
8.6
8.8

9
9.2

Elapsed Time = 200

0 2 4 6 8 10 12 14

7

7.2

7.4

7.6

7.8

Elapsed Time = 300

0 2 4 6 8 10 12 14
8.5

9

9.5

10

10.5

Elapsed Time = 150

0 2 4 6 8 10 12 14
8.25

8.5
8.75

9
9.25

9.5
9.75

Elapsed Time = 180

0 2 4 6 8 10 12 14

9
10
11
12
13
14
15

Elapsed Time = 75

0 2 4 6 8 10 12 14

9

10

11

12

13

Elapsed Time = 100

0 2 4 6 8 10 12 14
0
5

10
15
20
25
30
35

Elapsed Time = 10

0 2 4 6 8 10 12 14
8

10

12

14

16

18

Elapsed Time = 50

(a) Conventional 1, 5, and 15 m
load average triplets plotted on a
postive time axis gives the wrong
trend cues

-14 -12 -10 -8 -6 -4 -2 0
7.8

8
8.2
8.4
8.6
8.8

9
9.2

Time = 200

-14 -12 -10 -8 -6 -4 -2 0

7

7.2

7.4

7.6

7.8
Time = 300

-14 -12 -10 -8 -6 -4 -2 0
8.5

9

9.5

10

10.5

Time = 150

-14 -12 -10 -8 -6 -4 -2 0
8.25

8.5
8.75

9
9.25

9.5
9.75

Time = 180

-14 -12 -10 -8 -6 -4 -2 0

9
10
11
12
13
14
15

Time = 75

-14 -12 -10 -8 -6 -4 -2 0

9

10

11

12

13

Time = 100

-14 -12 -10 -8 -6 -4 -2 0
0
5

10
15
20
25
30
35

Time = 10

-14 -12 -10 -8 -6 -4 -2 0
8

10

12

14

16

18

Time = 50

(b) The same load average
triplets reversed on a negative
time axis gives the correct trend
cues

Fig. 4.9. Graphical representation of the 1, 5, and 15 m load average triplets plotted
at successive time periods from T = 10 to T = 300 (a) in conventional order, and
(b) in reversed time order. Each sequence is read from top left to bottom right. The
reversed time ordering 15, 5, and 1 m in sequence (b) gives the correct visual cues
because it shows the trend initially increasing and then slowly decreasing

Each sequence comprises eight plots in two columns with each plot represent-
ing a load average triplet sampled at some random time. The x-axis spans the
range 0 to 15 min. Within each plot, there are three dots connected by straight
lines to aid in revealing any load trends. The three dots, reading left to right
in the plot, correspond to the 1-, 5- and 15-min load average metrics. The
first plot shows the loads at 10 min after the load sampling process was com-
menced. The next sample was taken 50 min after sampling was commenced,
and so on, up to the last sample taken 300 min into the sampling process.

Reading the first plot from left to right, the visual cue based on the line
segments suggests that the load is initially decreasing. The first dot (highest),
however, corresponds to the most recent load average—the 1-min average—

4.5 Load Averages and Trend Visualization 189

while the third dot (lowest) corresponds to the oldest load average—the 15-
min average. So, this is back-to-front from the visual cue, and the load is
actually increasing.
This visual paradox can be resolved easily by merely reversing the time-
axis in the sequence of plots in Fig. 4.9(b). With this visual correction in
place, it becomes much easier to see that the load is rapidly increasing and
then gradually decreases. This effect can be achieved with the use of existing
tools such as MRTG (people.ee.ethz.ch/~oetiker/webtools/mrtg/) be-
cause they have an option to reverse the x-axis presentation. An example of
MRTG applied to monitoring system load average in a platform-independent
way by using SNMP (Simple Network Management Protocol) is available at
howto.aphroland.de/HOWTO/MRTG/SystemMonitoringLoadAverage.

Moreover, the visual paradigm in Fig. 4.9(b) could be taken a step further
to improve the cognitive impedence match between the system analyst and
the system under test. Plots of the load average triplets could be animated
in a tiny area of screen real-estate that is less intrusive than the time series
shown in Fig. 4.1. Any significant change in the load average trend is likely to
be detected by the system analyst’s peripheral vision rather than by poring
over a complete trace of time series data [See Gunther 1992, for details].

4.5.3 Application to Workload Management

In keeping with the title of this chapter, we close by briefly reviewing some
of the ways in which the load average metric has been used for monitoring
and redistributing workloads. A novel example of load monitoring is described
at www.snowplow.org/tom/worm/worm.html, where the load average metrics
were affected by the presence of an Internet worm. It was well known that
around 9:30 pm at night, the 1-min load average of the system should nom-
inally be around 1. In the presence of the Internet worm, replication caused
the 1-min load average to reach 37!

Understanding how host loads vary over time is important for predicting
such things as the execution time of work that is under the control of dynamic
load balancing [Franklin et al. 1994]. Dinda and O’Hallaron [1999] examined
week-long traces of load averages on more than 35 different machines includ-
ing production and research cluster machines, compute servers, and desktop
workstations. Despite certain complex behaviors that were exhibited in the
traces, it was found that relatively simple models based on (4.6) were suf-
ficient for short-range load prediction. These ideas have also been extended
to systems such as the computational GRID [Plale et al. 2002] and dispatch-
able load management [Wolski et al. 2000], performance management of Lotus
Notes [Hellerstein et al. 2001], and an Apache web server [Diao et al. 2002].

190 4 Linux Load Average—Take a Load Off!

4.6 Review

In this chapter we explored both the meaning and the generation of the load
average performance metric reported by a variety of unix shell commands. A
detailed understanding of how the load average is computed was accomplished
by examining the relevant online kernel code for the Linux operating system.

The function called CALC LOAD contains the central algorithm. It computes
the exponentially damped moving average of the run-queue length using 10.11
fixed-point arithmetic. The reported 1-, 5-, and 15-min load averages corre-
spond to three different damping factors shown in Table 4.4. These factors
give more weight to the most recent run-queue length samples than to older
data samples. Clearly, the Linux load average is not your average kind of
average!

Finally, we looked at some novel extensions of the conventional load av-
erage metrics for providing better visual trend information and forecasting
optimal placement of distributed workloads on systems such as the computa-
tional GRID.

Exercises

4.1. Definitions.
(a) How many definitions of the word load can you write down?
(b) Write down as many definitions of the word average as you can think of.
Now, when you hear people using these words in a performance analysis or
tuning context, you have no excuse for not asking what they mean.

4.2. What kind of averaging technique is used to calculate the Linuxload
averages?

4.3. Fixed point arithmetic.
(a) Calculate 1.01× 2.22 in 1.2 format.
(b) Calculate 1.01× (0.4 + 0.3) in 1.2 format.
(c) Calculate 1.01× 0.4 + 1.01× 0.3 in 1.2 format.

4.4. (a) Repeat the experiment described in Sect. 4.2 but replace the Perlscript
burncpu.c with one that performs disk-intensive I/O work.
(b) Compare your results with those obtained by burncpu.c.

5

Performance Bounds and Log Jams

5.1 Introduction

The material presented here comes from real case studies. Only the names,
place, and numbers have been changed to protect the guilty. In this chapter
you will see the power of bounds analysis based on the underlying queueing
concepts presented in Chaps. 2 and 3. The main point is to demonstrate how
much can be determined about plausible performance without knowing the
detailed performance characteristics.

The first example comes from performance analysis that was done without
being on site, without meeting the engineers involved, and without carrying
out any new performance measurements on the actual system. Everything was
done over the phone, and merely pointing out a simple inconsistency induced
enough communal guilt to motivate everyone else to start looking for the cause
of the problem. Eventually they found it. For me, in terms of doing the least
amount of work, it doesn’t get much better than that.

The second case study (commencing at Sect. 5.6), on the other hand, was
exactly the opposite situation. It represents a lot of hard work in which I was
very much involved in producing performance data, doing the performance
analysis, and wandering down many primrose paths. Superlinear behavior in
the response times measurements will be seen to arise from thrashing effects
that are in conflict with the expected response time bounds. Although the
amount of work was huge, so was the payoff: a three hundred percent perfor-
mance improvement! Similarly, it doesn’t come much better than that.

5.2 Out of Bounds in Florida

The title of this section is an oblique reference to the fact the system I shall
describe was set up at a development center in Florida, whereas I was based
in San Jose, California at the time. A third party had developed a custom
application that was undergoing load and stress testing by an independent

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_5, © Springer-Verlag Berlin Heidelberg 2005

192 5 Performance Bounds and Log Jams

group of engineers on behalf of the customer in Florida. In the last phases
of testing (where I came in), the system performance capabilities were being
measured prior to beta release. All told, this development and testing had
been going on for some 18 months.

5.2.1 Load Test Results

The following is a summary of the pertinent performance data with which
I was presented by the group of test engineers in Florida. They had built a
benchmarking platform with external client drivers. Using this platform, they
had consistently measured a system throughput of around 300 transactions
per second (TPS) with an average think-time of Z = 10 s between transaction
requests. Moreover, during the course of development, they had also managed
to have the application instrumented so as to be able to see where time was
being spent internally when it was running. This is a good thing and a precious
rarity!

The instrumented application had logged internal processing times. In the
subsequent discussion we shall suppose that there were three sequential pro-
cessing stages. In actual fact, there were many more. Enquiring about some
examples of instrumented processing times, I was given a list of average values
that we shall represent by the following three values: 3.5, 5.0, and 2.0 ms; at
which point I exclaimed, “Something is rotten in Denmark . . . er . . . Florida!”

5.2.2 Bottlenecks and Bounds

Before I explain my astonishment, we take a brief detour into some sim-
ple performance analysis techniques that are based on assessing performance
boundaries rather than performance details. In other words, the following will
show you how to do a lot with very little performance information. We shall
return to the Florida story in Sect. 5.5.

The approach we shall take to understanding the performance limits of
any computer system is sometimes referred to as the bounds analysis of the
throughput and response time characteristics of the system. The three-stage
tandem queueing circuit shown in Fig. 5.1 represents the three processing
stages of the benchmark platform that existed in Florida. The service demands
(in seconds) are:

Da = 0.0035 s ,

Db = 0.0050 s , (5.1)
Dc = 0.0020 s .

Of these service demands Db is the largest; we shall subsequently also refer
to it as Dmax.

5.3 Throughput Bounds 193

Da Db Dc

N, Z

R

X(N)

Fig. 5.1. A closed queueing circuit representing the three sequential processing
stages, each with different service demands: Da, Db, and Dc, and an infinite server
with think time Z representing the benchmark generators. The second queue is the
bottleneck center (see discussion)

5.3 Throughput Bounds

In the next two sections, we consider the best and worst cases for the system
throughput characteristic.

5.3.1 Saturation Throughput

We examine the best case throughput scenario first. At a saturated queueing
center, the server is 100% busy, and therefore ρ = 1. Substituting into Little’s
law (2.15), we can write:

ρ ≡ 1 = Xmax Dmax . (5.2)

At such a server in a queueing circuit, the throughput will be at a maximum
because there are no cycles left to produce a higher completion rate. We denote
the maximum throughput by Xmax.

In any queueing circuit under increasing request load, one queueing center
will reach saturation before the others. That center is called the bottleneck
center or just the bottleneck. It follows from (5.2) that the bottleneck is the
center with the longest service demand Dmax. In other words, the best possi-
ble system throughput Xmax is controlled by the bottleneck in the queueing
circuit. This can be expressed more formally by rearranging (5.2) as:

Xmax =
1

Dmax
. (5.3)

Note that Xmax in (5.3) has no dependence on the load N , once the saturation
point is reached; Xmax is constant. If we plot it against the load N , it simply
appears as a horizontal dashed line like that shown in Fig. 5.2.

The bottleneck will also have the longest queue or waiting line in a real
system; this is a fact that can often be observed easily, e.g., message queues.

194 5 Performance Bounds and Log Jams

0

50

100

150

200

250

0 500 1000 1500 2000 2500 3000

User Load (N)

S
ys

te
m

 T
hr

ou
gh

pu
t –

 X
(N

)

Fig. 5.2. Bounds on the throughput characteristic. The horizontal dashed line is
the maximum possible throughput and is controlled by the bottleneck queue in the
system. The inclined dashed line is the uncontended throughput bound. The optimal
system load occurs where the two dashed lines intersect

This follows from the fact that all centers upstream from the bottleneck cen-
ter (just Da in Fig. 5.1) have service demands that are smaller than Db.
Therefore, all completions from the upstream queue simply pile up at the
bottlenecked queue and will tend to make the bottlenecked queue grow. Sim-
ilarly, all queues downstream from the bottleneck also have service demands
that are shorter than Db, but they can only service completed requests flow-
ing from the bottlenecked queue, so they cannot shorten the bottleneck queue
length.

5.3.2 Uncontended Throughput

We next bound the subsaturated throughput. The shortest possible time Rmin

it takes to get through the circuit in Fig. 5.1 occurs when there is no queueing
to contend with. That time is simply the sum of the service demands at all
the centers:

Rmin = Da + Db + Dc . (5.4)

If we substitute (5.4) into the Response Time Law give by (2.90) from Chap. 2
we find:

Da + Db + Dc =
N

X
− Z . (5.5)

Solving for the throughput X produces:

5.3 Throughput Bounds 195

X =
N

Da + Db + Dc + Z
. (5.6)

This is the throughput under the special constraint of no contention. Fol-
lowing our previous inclinations for the saturated throughput, we plot the
uncontended throughput against the load N , and see that it appears as the
inclined straight line in Fig. 5.2. For this reason we denote it by Xlin and note
that the general form is given by:

Xlin =
N

D + Z
, (5.7)

where we have introduced the symbol D as shorthand for

D = Da + Db + Dc , (5.8)

the sum of the service demands.
We now see that the uncontended throughput is bounded by a linear func-

tion of N with a slope controlled by 1/(D+Z). As we increase the load N on
a real system, the actual throughput begins to fall away from this ideal linear
boundary because of increasing queueing contention in the system.

5.3.3 Optimal Load

The leading indicator of optimal load occurs at the point Nopt where the
throughput bounds intersect in Fig. 5.2. From (5.3) and (5.7) we have:

1
Dmax

=
N

D + Z
. (5.9)

Solving for N produces:

Nopt =
D + Z

Dmax
. (5.10)

Since D +Z is actually the minimum possible round trip time Min(RTT), we
could also write (5.10) in the alternative form:

Nopt =
Min(RTT)

Max(Da, Db, . . .)
. (5.11)

The value of (5.10) is that it enables us to interpret characteristics like Figs. 5.2
and 5.3 in terms of light and heavy load regimes.

Light load: The region where N ≤ Nopt. Resources are generally under-utilized.
This may be appropriate if some head room is required for future capacity
consumption. More typically, it is a sign of waste.

Heavy load: The region where N ≥ Nopt. Resources are generally over-burdened
and the load tends to drive the system into saturation. This is when bottle-
necks are observed and ranked for removal according to cost–benefit criteria.

We can carry out a similar analysis to evaluate the best-, and worst-case
response times.

196 5 Performance Bounds and Log Jams

5.4 Response Time Bounds

We repeat the same kind of bounds analysis for the response time character-
istic.

5.4.1 Uncontended Response Time

As we observed previously, the shortest possible time (5.4) to get through all
the queueing centers occurs when there is only one customer in the system,
since under those circumstances, there can be no queueing contention for
common resources, viz.

Rmin = D. (5.12)

Since Rmin is not a function of N , it appears as a horizontal line in the middle
of in Fig. 5.3.

5.4.2 Saturation Response Time

Beyond the saturation point Nopt there is no worst time. The response time
just gets progressively worse with increasing load. For a closed system like
that in Fig. 5.1, the only limit is the size of the finite request population N .
Applying the Response Time Law in (2.90) once again, we have in saturation:

-10

-8

-6

-4

-2

0

2

4

6

8

10

0 500 1000 1500 2000 2500 3000

User Load (N)

S
ys

te
m

 R
es

po
ns

e
Ti

m
e

–
R

(N
)

Fig. 5.3. Bounds on response time characteristic

5.4 Response Time Bounds 197

R =
N

Xmax
− Z , (5.13)

and substituting (5.3) for Xmax produces:

R∞ = N Dmax − Z . (5.14)

Beyond the saturation point Nopt, the response time is asymptotic to (5.14)
with the slope controlled by Dmax and a y-intercept at −Z as shown in Fig. 5.3.

Note that the increase in response time above Nopt is linear, not exponential, as
some authors claim (see, e.g., [Wilson and Kesselman 2000, p. 6 ff.] and [Splaine
and Jaskiel 2001, p. 241]).

5.4.3 Worst–Case Response Bound

0

2

4

6

8

10

12

14

0 500 1000 1500 2000 2500 3000

User Load (N)

R
es

po
ns

e
Ti

m
e

(s
)

R_mean

R_worst

Fig. 5.4. Worst-case response time bound (upper curve) compared with the average
response time (lower curve)

The worst-case response time bound (Fig. 5.4) corresponds to (5.14) with
Z = 0. Then:

Rworst = NDmax . (5.15)

It is an asymptote with the same slope as (5.14) in Fig. 5.3 but translated to
intersect the load axis N at the origin.

198 5 Performance Bounds and Log Jams

5.5 Meanwhile, Back in Florida . . .

With the basic concepts of bounds analysis understood, we are now in a
position to apply them to the data from the benchmark platform in Florida
in Sect. 5.2.1. So, what is it that was rotten in Florida?

We know from the application instrumentation data that Dmax = 0.005 s
and the bounds analysis determines Xmax = 200 TPS from (5.3). We can also
apply (5.10) with the data in (5.1) to predict:

Nopt =
10.011
0.005

= 2002.10 users .

On the other hand, the benchmark data led the test engineers doing the
measurements to claim 300 TPS performance. From this information we may
hypothesize:

1. The benchmark measurement of 300 TPS is wrong.
2. The instrumented data from the application are wrong.

In light of this apparent inconsistency, the test engineers in Florida decided
to thoroughly review their measurement methodology. Within 24 hours they
found the problem.

The client code employed an if() statement to calculate the instantaneous
think-time between each transaction in such a way that the statistical mean
for Z was 10 s. The engineers discovered that this code was not being executed.
The think-time was in fact precisely Z = 0.

In essence, it was as though the transaction measured at the client Xclient

was comprised of two contributions:

Xclient = Xactual + Xerrors ,

such that Xactual = 200 TPS and Xerrors = 100 errors/s. In other words, the
test platform was being overdriven into batch mode, where the undue intensity
of arrivals caused the software to fail to complete some transactions success-
fully. Nonetheless, the application returned an ack to the client driver, which
then scored it as a correctly completed transaction. The instrumentation data
were correct, but the benchmark measurements were wrong. This led to a
performance claim for the throughput that was only in error by 50%!

You should always have a performance model against which to compare with your
measured data. To paraphrase a quote often attributed to Einstein, if your data
disagrees with your model, change your data!

The PDQ model florida.pl that was used to do the performance analysis
in this chapter can be found in Chap. 6.

5.5 Meanwhile, Back in Florida . . . 199

5.5.1 Balanced Bounds

Tighter bounds on throughput and response times could be obtained by con-
sidering a balanced system. In Fig. 5.1 the service demand Db is the bottle-
neck node, and it determines the system performance according to Sect. 5.2.2.
Clearly, this performance limitation would be improved if we could reduce the
magnitude of the service demand Db. For example, if we could arrange things
such that Db < Da then, Da would become the new, but less severe bottle-
neck. In principal, this procedure could be continued until all the queues had
identical service demands: Da = Db = Dc. Then, we would have a balanced
system where performance could not be improved any further.

5.5.2 Balanced Demand

Lazowska et al. [1984] present a detailed discussion of balanced systems. Here,
we merely outline the formal concept by first defining the average of all the
service demands over K queueing centers. That is,

Davg ≡ D

K
=

1
K

K∑
k

Dk , (5.16)

where we shall make use subsequently of the explicit summation. For the
circuit in Fig. 5.1:

Davg =
Da + Db + Dc

3
. (5.17)

The bottlenecked queue determines the saturation throughput Xmax. Forcing
all the queues to have the same service demand Dmax would certainly make
the system balanced, but it would not reduce Xmax. That, however, is the
most pessimistic choice.

The ideal throughput bound would be achieved if we forced all the servers
to have the shortest service demand Dmin, e.g., 2 ms in Fig. 5.1. Realistically,
however, the best attainable throughput lies somewhere between these two
extremes and corresponds to setting all the service demands equal to Davg in
(5.16).

5.5.3 Balanced Throughput

More formally, consider a closed queueing circuit with K queues and a batch
workload (i.e., think-time Z = 0). Applying the Response Time law in (2.90)
the system throughput is:

X =
N

R
, (5.18)

where the response time

200 5 Performance Bounds and Log Jams

R =
K∑
k

Dk [1 + QN−1
k] , (5.19)

is expressed in terms of the Arrival Theorem given by (3.27) from Chap. 3.
In a balanced system, all queues will have the same queue length, viz.

the number of requests in the system (N − 1) averaged over the K queues.
Therefore, we can rewrite (5.19) as:

R =
∑

k

Dk

[
1 +

N − 1
K

]
, (5.20)

which, upon factoring out 1/K, gives:

R =
∑

k

Dk

K
[K + N − 1]. (5.21)

But the summation over Dk in the first factor is just the definition of Davg in
(5.16). Consequently, (5.21) simplifies to:

R = Davg [K + N − 1] . (5.22)

Substituting this result into (5.18) produces the balanced bound:

X ≤ Xbalanced ≡ N

Davg [K + N − 1]
, (5.23)

which should be compared with:

X ≤ Xbottleneck ≡ 1
Dmax

, (5.24)

the bottleneck bound.

Example 5.1. Combining the measurement data in (5.1) with the parameters
in (5.25) and substituting into (5.23) gives Xbalanced = 285.49 TPS, whereas

N = 2500 ,

Z = 10.00 ,

K = 3 , (5.25)
Davg = 0.0035 ,

Dmax = 0.0050 ,

and Xbottleneck = 200 TPS in Fig. 5.2. Therefore, Xbalanced > Xbottleneck. ��
For large K, the averaged service demand Davg will be less than Dmax, so the
achievable throughput in a balanced system (5.23) will always be higher than
that in an unbalanced system.

5.6 The X–Files: Encounters with Performance Aliens 201

5.6 The X–Files: Encounters with Performance Aliens

We continue to demonstrate how the bounding techniques of Sect. 5.2 can
be applied to the performance analysis and tuning of a large-scale clustered
computing environment. The alien effects and performance gremlins that we
uncover in this section were sufficiently evanescent that we could not resist
presenting them with an oblique nod to the popular television show The X-
Files, and Steven Spielberg’s movie Close Encounters of the Third Kind.

5.6.1 X-Windows Architecture

The X-Windows system, or more colloquially just X or X11, is a ubiquitous
windowing technology developed in the 1980s at MIT and primarily directed
at providing a network-transparent graphical user interface (GUI) for the unix
operating system.

X11 is possibly one of the longest and most successful open-source collab-
orations administered by the www.x11.org consortium, with a worldwide user
community estimated to exceed 30 million. It is the de facto graphical engine
for Linux and many unix platforms and provides the only common windowing
environment spanning the heterogeneous platforms present in most enterprise
computing environments.

Because of its network transparency and its independence from the oper-
ating system, hardware platform, all the major hardware vendors (e.g., Sun,
HP, IBM) support the X11. Other X11-based technologies, such as Citrix and
WinTerm, integrate X11 applications into desktop environments running Mi-
crosoft Windows and Apple MacOS. It is also the basis for many thin-client
technologies zdnet.com.com/2100-1104_2-5298751.html. In this sense, it is
more proven than many Web technologies.

HostScreen

X11 request

X11 response

Xclient

Xserver

Fig. 5.5. X-window client/server protocol terminology

The version of the X windows described in this section is X11R5. The thin
client architecture shown in Fig. 5.5 is described in terms that are the re-
verse of the conventional client/server terminology used in Chap. 9. A remote
host, called the X-client, performs the windowing computations and tells the

202 5 Performance Bounds and Log Jams

desktop display, called the X-server, how to draw on the screen. This is ac-
complished by X11 messages exchanged between X-client and X-server. Also
included in the X11 architecture is the possibility of using remote services for
file and font storage, as well as doing scheduled backups.

5.6.2 Production Environment

The production environment, shown schematically in Fig. 5.6, was hosted on
a 200 node IBM SP-cluster platform which supported proprietary X11 appli-
cations running Tektronix (Tek) X-terminals. The X11 applications enabled

. . .
S390

Robotic tape silos

IBM AIX/SP-2 50 nodes

IBM AIX/SP-2 50 nodes

SP2 SP2
FDDI rings

User Tek X-terminals

Fig. 5.6. SP-cluster X-window based production environment

geophysicists to perform seismic data processing using numerical transforms
and graphics routines to the presence of oil. These applications were developed
by an in-house software development group.

The X11 applications were sold both as an analytic service to other oil
exploration companies and as a stand-alone commercial package. A significant
investment had been made in this technology worldwide. There was only one
problem: performance!

5.7 Close Encounters of the Performance Kind

5.7.1 Close Encounters I: Rumors

In UFO terminology, a close encounter of the first kind refers to a sighting
without any physical evidence being left behind or actual contact being made.

5.7 Close Encounters of the Performance Kind 203

In this case, the geophysicists who used the system had observed and were
complaining about poor responsiveness of the application suite. Many users
also agreed with one another that some applications had poorer performance
than others. In particular, many users expressed frustration with the erratic
nature of the poor responsiveness.

The two dominant performance perceptions were:

1. Application launch times could be very long (sometimes on the order of
minutes).

2. Interactive response times, once the application was launched, could also
be sluggish.

These conditions were also impossible to replicate on demand, so there was
no physical evidence; just like a UFO, you either believed you saw it or not.
In particular, there were no quantitative measurements. This leads us to close
encounters of the second kind.

5.7.2 Close Encounters II: Measurements

A close encounter of the second kind refers to recovering evidence without
making physical contact.

In this case, three of the most frequently used and poorest performing
applications were reviewed. It turned out that some typical launch times had
been measured with a wrist-watch! This is where the rumor of launch times
of order a minute came from. In this sense, there were some quantitative
measurements but they had not been recorded, so that information could
never have a status higher than rumor or hearsay. With no supporting log
files, the accuracy of someone’s memory could not be validated.

Nonetheless, this led quickly to the idea of writing a benchmark script that
emulated a user interacting with the three notorious applications. The initial
benchmark was directed solely at launching each of the three X11 applications
in succession every 10 min and logging the respective launch times to a file.
A sample set of raw benchmark data is shown in Fig. 5.7. The correspond-
ing time series representation in Fig. 5.8 is often more useful for recognizing
patterns in the data. The large spike seen at around 6:15 p.m. belongs to the
seismoe application and shows clearly that it took about 55 s to launch, thus
corroborating the close encounter of the first kind.

We can also see clearly that all three of the applications of interest have
launch times with a 10 s average and significant variance. A close encounter
of the third kind, i.e., contact, requires analysis of the collected performance
data.

5.7.3 Close Encounters III: Analysis

Statistical analysis can now be applied to the raw data. Unfortunately, in
the this production environment no X11 statistical tools were available, so
Perlscripts were constructed to produce relevant statistical plots (Fig. 5.9).

204 5 Performance Bounds and Log Jams

Fig. 5.7. Histogram plot of raw benchmark data for the application that suffered
most frequently from prolonged launch times. An example of a large launch-time
spike (almost 1 min) is seen near 18:20 h

0

10

20

30

40

50

60

17:14:42 17:30:40 17:47:05 18:02:46 18:22:58 18:43:41 19:02:33 19:21:22 19:39:56 20:02:46

La
un

ch
 T

im
e

(s
)

app1
app2
app3

Fig. 5.8. Time series representation of raw benchmark data showing comparative
launch-time fluctuations for all three measured applications

It occurred to the author to try and use the some of the seismic application
software for performance analysis. There were indeed a large number of statis-
tical tools, but they required a proprietary structured file format that would
have been too time consuming to reproduce. Summary launch-time statistics
based on benchmark data for each of the three applications of interest are
shown in Table 5.1. In all cases, the asymmetric statistical distribution with

Table 5.1. Benchmark statistics with times reported in seconds

Application Min. Mean SD Max.

Seismoe 10 20 30 ≥ 100
Multiflow 6 10 3 20
Grapho 6 15 5 50

a long tail is clearly evident. Physically, this means that any user launching
an application would generally see a mean launch time in the range 10 to

5.8 Performance Aliens Revealed 205

App1 Stats for 728 samples in "bench.log.seismoe"

===

Minm: 5.69 Mean: 14.26 Maxm: 773.94 MDev: 4.35

Var: 811.65 SDev: 28.49 COV: 2.00

GamA: 0.25 GamB: 56.92

Secs | 5% 10% 15% 20% 25% 30% 35% 40% 45% 50%

-----|----+----+----+----+----+----+----+----+----+----+---------

< 3|

3- 6|*

6- 9|****************

9-12|*********************

12-15|****************************

15-18|**********************

18-21|****

21-24|**

24-27|*

27-30|

30-33|

33-36|

36-39|

39-42|

42-45|

45-48|

48-51|

51-54|

54-57|

> 60|

Fig. 5.9. Example histogram of application response time profile

20 s, but occasionally launch times more than ten times that long could be
observed. Although launching an application is typically only performed once
per session, such a huge variation in launch times can already give the user
the unnecessary perception of erratic application performance.

During the launch phase, the application was measured to be mostly in
a wait state on the corresponding SP cluster node (i.e., it was neither CPU-
bound nor I/O-bound). To resolve further how time was being spent during
the launch phase, it was necessary to monitor the actual X-messages.

5.8 Performance Aliens Revealed

5.8.1 Out of Sight, Out of Mind

On the enterprise network were two remote and un-instrumented font servers
that between them had approximately 15,000 fonts. The role of these two

206 5 Performance Bounds and Log Jams

servers was to provide the best match to a font query from any X-client.
Moreover, having the fonts loaded on just a couple remote servers is more
efficient, from a system management standpoint, than replicating all those
fonts on each one of the 200 nodes in the SP cluster.

The impact on performance of these remote services has to be measured.
The open source tool called Xscope (provided with the X11R5 source distribu-
tion) was used for this purpose. Xscope uses the simple concept of interposing
itself between the Xserver (terminal) and the Xclient (an SP cluster node) in
such a way that the terminal thinks it is responding directly to the SP and
the SP thinks it is talking to the terminal. This ambushed X-traffic is decoded
on the fly and logged to a trace file. What is most important for many secure
enterprises is that no promiscuous network packet-sniffing is required.

The following two unix commands:

> xscope -term121 -i0 -v1 >xscope.trace &

> seismoe -display host46:0 1>seismoe.rc.trace 2>/dev/null &

tell Xscope running on host46 to record X-traffic generated by the application
seismoe from the X-terminal term121 and log it to a file called xscope.trace.
Surprisingly, Xscope adds no more than about 2% to X-traffic latency. A
fragment of a trace file looks like this:

............REQUEST: OpenFont

font-id: FNT 02000287

name: "*courier*medium-o-normal*-11-*"

............REQUEST: QueryFont

font: FTB 02000287

7.39: 1460 bytes <-- X11 Server

7.39: 1480 bytes <-- X11 Server

..............REPLY: QueryFont

min-bounds:

max-bounds:

min-char-or-byte2: 0x0020

max-char-or-byte2: 0x00ff

default-char: 0x0000

draw-direction: LeftToRight

min-byte1: 0x00

max-byte1: 0x00

all-chars-exist: False

font-ascent: 8

font-descent: 2

Fig. 5.10. Tiny portion taken from a typical xscope trace file showing the point
when the remote font service is called. A sporadic time stamp can be seen on the
left-hand side

5.8 Performance Aliens Revealed 207

From Xscope traces (Fig. 5.10), it was determined that most of the launch
time was spent resolving application font requests across the two remote X-
font servers. The two numbers on the left-hand side of the file are actually
wall-clock time in decimal seconds (cf. Chap. 1). They tell us that the X-
conversation about remote fonts starts at 7.39 s into the application launch,
in this particular measurement. That elapsed time is consistent with other
performance instrumentation, particularly where the CPU appears to go into
a wait state after about 10 s.

Seismoe, for example, required some 40 fonts to launch but there was an
aggregate of more than 15,000 remote fonts were available. The 40 fonts that
best fit the X-request must be searched for among the thousands of fonts
available.

During these experiments, several font protocols were measured for their
relative latencies. As well as the two font servers just mentioned (that use
the X-protocol to resolve font queries), the Tek boot PROM provided another
source (13 fonts), as did the Tek boot file system (96 fonts), and NFS-mounted
files on Zeus and Kepler. The respective numbers of fonts were:

total fonts in Path tcp/fs001.big.seismic.com:7000 8371

total fonts in Path tcp/fs002.big.seismic.com:7000 7113

total fonts in Path /xterms/teknc305/boot/ 96

total fonts in Path resident/ 13

total fonts in Path tcp/zeus.big.seismic.com:7100 4781

total fonts in Path tcp/kepler.big.seismic.com:7100 6237

The injection benchmark was reconfigured to rotate among these various font
services. Each font path was reset dynamically in benchmark. Table 5.2 shows
some of the resulting measurements. One immediate observation was that
restricting queries to just one font server was faster than querying across two
remote servers.

Table 5.2. Selected remote font services and the corresponding latencies

Font Number Server Latency
server of fonts type (s)

XFS1 8371 X font server 18.57
XFS2 7113 X font server 16.72
NFS1 4781 NFS mounted 17.01
NFS2 109 NFS mounted 9.41

5.8.2 Log–Jammed Performance

An extremely simple model can be constructed to confirm that the mean
launch time R exhibits logarithmic scaling with the number of font files F
on the remote font servers. Consider two font servers: a reference server So

208 5 Performance Bounds and Log Jams

loaded with Fo font files and a comparison server SX loaded with FX font
files. The relative latency RX/Ro of a font-query can be expressed as:

RX = Ro
log10 (FX)
log10 (Fo)

. (5.26)

In fact, it is more convenient to normalize all the results to a reference serve
with the least number of fonts, viz. Fo = 109 in Table 5.2.

The insight of the model can be stated very simply. Suppose the reference font
server is loaded with just Fo = 100 fonts while the remote server has FX =
1000 fonts. Then the latency model given by (5.26) states that since the logarithm
of the number of fonts is in the ratio 3/2, the average launch time for the remote
font server will be 1.5 times longer than for the reference server.

Table 5.3 compares some typical measured latencies with estimates from the
logarithmic latency model in (5.26).

Table 5.3. Comparison between measured font latencies and the logarithmic latency
model RX . All times are in seconds

Server Data RX Error (%)

XFS1 18.57 18.12 −2.50
XFS2 16.72 17.79 6.02
NFS1 17.01 16.99 −0.09
NFS2 9.41 9.41 N/A

The subscript notation XFS1 and XFS2 in Table 5.3 refers to the stan-
dard font servers, which happened to be two IBM RS6000 workstations.
The alternative font paths with subscripts NFS1 and NFS2 refer to the
NFS-mounted servers. Service from NFS2 gave the best typical launch time
(RNFS2) for seismoe, and that is why it was used as the basis for normaliza-
tion. A minus sign in the percentage error column indicates that the model
underestimated the measured time. Additional experiments bore out this con-
clusion within an error margin of less than ±10%, but why does this model
work so well?

5.8.3 To Get a Log You Need a Tree

We can anticipate that the observed latency of any remote font service is
determined by a large number of factors, including network latency, platform
latency, caching, and so on. In addition, the font query in X11 is complicated.
For example, rather than simply returning an explicitly nominated font, the
font server tries to return the best match to the query based on the window

5.8 Performance Aliens Revealed 209

geometry and a number of other factors. To explicitly measure the latency of
all these factors would be horrendously complicated. There is an old adage

• • •

• • •

Level 0 ⇒ 100 = 1 branch

Level 1 ⇒ 101 = 10 branches

Level 2 ⇒ 102 = 100 branches

Fig. 5.11. Example tree structure responsible for logarithmic characteristic seen in
the X11 font server latencies

in mathematics that says to get a log, you need a tree. If we take the very
simple view that the fonts are organized in some kind of directory structure
and that directory structure can be expressed as a simple tree such as depicted
in Fig. 5.11, the logarithmic nature of (5.26) can be understood easily.

The depth of the tree can be enumerated as a number starting with zero
at the root. At any level L every predecessor branch (above) has ten sibling
branches. The total number of branches at that level is then given by 10L.
Since the time to search is determined by the depth of the tree, the latency will
also be proportional to L, i.e., R ∝ L. The model in (5.26) is the normalized
version of this intuition. This simple model, however, only accounts for the
average latency because some font queries may be addressed in less time if
that font has been cached due to a previous query requesting the same font.
Moreover, this caching effect also accounts for the erratic variation in observed
application launch times.

The great value of this simple model is that it immediately suggests a
simple and therefore very cheap fix, namely, paring back the number of fonts
loaded on the primary font server. Given the complexity of the various sub-
systems needed to support the operation of X11, e.g., X-client software port,
memory accesses, buffering, network load, it is surprising that none of these
things plays a significant role in determining the mean launch time. As sug-
gested by the log-model, the most important control parameter is the number
of fonts on the font servers. Two corollaries follow immediately.

1. Restrict the number of fonts used by developers and verify the perfor-
mance impact via acceptance testing procedures.

2. As part of overall of X11 system management the fonts loaded onto font
servers at each new release should be deliberately selected to match those
used by application developers.

These two points are important because they are not part of the prescription
endorsed by the X11 consortium as part of system management, and the severe
impact on performance of ignoring them should be clear from the results
presented in this section. The performance gain was 300% for launch times.

210 5 Performance Bounds and Log Jams

5.9 X-Windows Scalability

Having made “contact” with the major performance alien responsible for the
erratically poor launch times, the second performance issue that was observed
in Sect. 5.7.1 was the significant interactive variance that occurred once the
application was launched. The interactive responsiveness can depend on multi-
ple users having multiple copies of the same application running concurrently.
This is an issue directly related to application scalability. Quantification of
such multi-user effects requires the measurement of X-window events within
the context of sibling windows belonging to each user instance of an X-parent
window.

5.9.1 Measuring Sibling X-Events

Capturing context-dependent X-events is difficult to do and is best left to
commercial load testing tools designed for that purpose. In this case, Mer-
cury Interactive’s XRunner r© product was selected. A set of experiments were
performed using XRunner to measure the increase in launch times as the SP-
cluster node was placed under increasing user load. The response time mea-

-100

0

100

200

300

400

500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Vusers

La
un

ch
 ti

m
es

 (
s)

Rmean

Rmin

Rinf

Fig. 5.12. Superlinear response time curve (cf. Fig. 5.3)

surements were expected to conform to the typical characteristic shown in
Figs. 2.20 and 5.3 for a closed queueing circuit. The actual data, correspond-
ing to the mean response time measurements, are plotted in Fig. 5.12. The
general convex characteristic appears to be correct. However, when we plot
the corresponding bounds:

5.9 X-Windows Scalability 211

• Rmin: The minimum possible response time with no contention present
• Rinf: The linear rise in response time as the number of users increases

(assuming no other limit is reached).

we discover a significant deviation from this expected characteristic. Above
an XRunner load of 20 V users (Fig. 5.12), the mean seismoe launch times
increase dramatically above the Rmin asymptote. In fact, it is superlinear !
This can only happen when secondary latency effects (e.g., virtual memory
paging) begin to dominate the measured response times. Indeed, Fig. 5.13
shows that above 20 seismoe V users the system begins to thrash, while above
30 seismoe V users the local X host quietly pages itself into oblivion.

kthr memory page faults cpu

----- ----------- ------------------------ ------------ -----------

r b avm fre re pi po fr sr cy in sy cs us sy id

17 5 125304 8 0 0 319 330 362 0 2302 12278 3464 41 59 0

11 8 126177 9 0 0 306 320 371 0 2518 13072 3680 37 63 0

11 10 126959 8 0 1 321 336 381 0 2054 12472 3312 39 61 0

8 11 127884 4 0 2 284 336 391 0 1688 10294 3921 38 43 0

13 4 128521 81 0 2 274 298 343 0 1728 10893 3344 45 47 0

7 11 129328 6 0 1 276 317 397 0 1816 10702 3200 38 54 0

11 7 130235 5 0 1 285 357 427 0 1378 9194 3669 34 35 0

18 1 130189 521 0 1 126 112 128 0 1368 11547 2026 52 48 0

Fig. 5.13. A portion of AIX vmstat output showing a high degree of virtual-memory
paging activity

5.9.2 Superlinear Response

Optimal loading is determined by the point where the asymptote intersects
the lower bound, i.e., V users = 7. Recalling that these curves are based on
mean response time values, this choice allows for the inevitable fluctuations
(variance) around the optimum while trying to minimize their impact on the
V users response time.

Maximal loading is determined by the point where the response curve rises
faster than the theoretical asymptote, i.e., V users = 20. Fluctuations above
this point are likely to occur often and only recover in times that are relatively
long compared with those about the optimum.

This interpretation is further corroborated by Seismoe interactive response
time measurements. At 20 V users the response times for the interactive seis-
moe operations of opening and saving a data file, suddenly escalate by an order
of magnitude over the times measured for 15 V users. No time was available
to investigate whether this was also a side effect of virtual memory paging or
some other phenomenon.

212 5 Performance Bounds and Log Jams

5.10 Review

In this chapter we demonstrated the power of bounds analysis based on the
underlying queueing theory presented in Chaps. 2 and 3. In particular, we saw
that busywork doth not the truth make. Flaws in the performance data that
had been collected previously on a remote benchmark platform were uncovered
with minimal effort and the cost of a couple of phone calls. It doesn’t get much
better than that!

Similarly, the superlinear behavior of the measured response times on a
large-scale cluster platform could be attributed to thrashing effects conflicting
with the expected response time bounds. In this sense, some expectations are
better than no expectations.

Exercises

5.1. Suppose the performance instrumentation in the software was broken on
the Florida benchmark platform, rather than the driver script as was discov-
ered in Sect. 5.5. What would the service demand of the bottleneck stage have
to be for the system to produce the measured 300 TPS?

5.2. If all the service demands could be set to Dmin in Example 5.1, what
would be the balanced throughput bound?

Part II

Practice of System Performance Analysis

6

Pretty Damn Quick (PDQ)—A Slow

Introduction

6.1 Introduction

This chapter introduces the PDQ c© (Pretty Damn Quick) queueing analyzer
and explains how to use it. We begin with some guidelines on how to build
performance models and then move on to the specifics of the PDQ library in
Perl. Finally, we present the actual PDQ codes for the examples discussed in
Chaps. 2 and 3. Other PDQ model codes are embedded in the chapters of
Part II. Instructions for installing PDQ and creating the corresponding Perl
module can be found in Appendix F.

6.2 How to Build PDQ Circuits

Consistent with the notion of circuits presented in Chap. 3, every PDQ pro-
gram should have a defined set of inputs and a set of outputs. The inputs are
performance metrics such as traffic rates, active user population, and service
rates. These come from the data you have collected from the system you are
analyzing or estimates if no data exists. The role of PDQ is to provide a set of
performance metrics, such as utilizations, queue lengths, and residence times,
as outputs.

6.3 Inputs and Outputs

As an example of this procedure, recall the response time formula in (2.35) for
an M/M/1 queue labeled with its respective input and output parameters:

(output)R ←− D (input)

1 − λ (input) × D (input)
. (6.1)

This is also a model; an equational model but a model, nonetheless. The
corresponding queueing circuit is shown in Fig. 6.1. Equation (6.1) is already

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_6, © Springer-Verlag Berlin Heidelberg 2005

216 6 Pretty Damn Quick (PDQ)—A Slow Introduction

contained in PDQ, so you will never have to write the code for this equation
explicitly. To solve (6.1) manually, however, we need the appropriate inputs.
These are the parameters on the right side of the formula, viz. the arrival rate λ
and the service demand D. Those inputs are then used to calculate the output
R on the left side of (6.1). That is precisely what PDQ does algorithmically.

V

W

(A) (C)X

S

R

Fig. 6.1. Simple M/M/1 queueing circuit with conventional inputs : the arrival rate
λ, the mean number of visits V , the mean service time S, or the service demand
D = V S. The typical outputs are the waiting time W , the residence time R in (6.1),
and the mean queue length Q = λR

Of course, things are rarely this simple in real life. We may not have a direct
measurement of the arrival rate λ or the average service demand D, so we
have to resort to deducing it from other information we do have. For example,
we may have to calculate the arrival rate by counting the number of arrivals
A during the measurement period T and using the relation λ = A/T from
Chap. 2. Combining this calculated λ with the measured utilization of the
server, we can use Little’s law ρ = λD to determine the input service demands
as D = ρ/λ.

Building PDQ models is merely an extension of this same process. We try
to limit the number of input parameters required for the model and let PDQ
do the work of computing numerous output metrics. Sometimes, the process of
building a PDQ model can surprise you by telling you what parameters need to
be measured as inputs that you had not thought of previously. An advantage
of PDQ is that you do not have to construct the code for all the performance
equations presented in Chaps. 2 and 3. Another advantage of PDQ is that the
outputs can be computed for very complex queueing circuits with multiple
workloads that would otherwise be debilitating, if not impossible, to carry
out by hand.

6.3.1 Setting Up PDQ

PDQ is a queueing circuit solver, not a simulator. As part of its suite of
solution methods, PDQ incorporates the MVA algorithm discussed in Chap. 3.
The purpose is to enable the user to build queueing circuit representations of

6.3 Inputs and Outputs 217

actual computer systems to do the kind of performance analysis described in
Part I of this book.

Unlike similar queueing circuit solvers, PDQ is not a binary application
constrained to run only on certain types of computers. Rather, PDQ is pro-
vided as open source so that it can be installed and run on the user’s platform
of choice. Naturally, all the other benefits of open-source development accrue.
In particular, users are encouraged to extend the source and share it with
others, and possibly find remaining bugs.

For efficiency, the underlying solver routines are written and maintained
in the C language, but its functionality is also made available to the user
through a Perl module interface. A new PDQ model is written in the Perl
scripting language, and thus some programming is required. This approach
imposes two simple demands on the user:

1. The first is that you are familiar with the Perl language. The choice of Perl
facilitates the use of all the constructs of a modern programming language
such as procedures, lists, associative arrays, subroutines, and recursion to
solve potentially very elaborate performance models in PDQ.

2. Second, you need to have to access to a C compiler. It is necessary to
compile the PDQ library once so that it can execute the PDQ Perl module
on your system. C compilers are generally available with every unix and
Linux platform but you might be advised to check with your local system
administrator facilitate the installation of perl PDQ.

This choice of Perl is intended to maximize the portability and utility of PDQ.
Perl scripts do not need to be formally compiled, thereby enabling rapid

prototyping and testing of performance models. The interested reader is also
encouraged to see home.pacbell.net/ouster/scripting.html, which pro-
vides further compelling justifications for the use of scripting languages.

Setting up a PDQ model is very straightforward and may be summarized
in the following simple sequence of programming steps:

1. Define each instance of a queue in the queueing circuit by calling the
PDQ::CreateNode() function.

2. For an open circuit, define each instance of a traffic stream by calling the
PDQ::CreatOpen() function.

3. For a closed circuit, define each instance of a batch or interactive user
workload stream by calling the PDQ::CreatClosed() function.

4. Specify the service demand for each of the defined workloads on each
of the previously defined queueing centers in the circuit by calling the
PDQ::SetDemand() function.

5. Solve the PDQ model by calling the PDQ::Solve() function with the
desired solution technique passed as parameter.

6. Generate a standard performance report by calling the PDQ::Report()
function.

218 6 Pretty Damn Quick (PDQ)—A Slow Introduction

All PDQ performance models are constructed by following this same basic
paradigm.

For those readers not familiar with the Perl language, PDQ offers a mo-
tivation to learn it. The classic introductory programming references are
by Schwartz and Phoenix [2001], and Wall et al. [2003]. Many other excel-
lent texts and other Perl resources can be found online at www.perl.org. Re-
member, any serious performance modeling is actually serious programming.

6.3.2 Some General Guidelines

Based on the concept of circuit inputs and outputs, a good starting point for
creating a PDQ model is to draw a block diagram of the system. This might be
a functional block diagram showing the workflow or a UML diagram [Smith
and Williams 2001]. It is usually best to choose the high-level description with
which you are most familiar.

Block A

Time TA

Block B

Time TB

D = TA + TB

(a) Sequential function

Block A

Time TA

Block B

Time TB

p

1 - p

D = pTA

D = (1 - p)TB

(b) Parallel function

Block A

Time TA

p D = TA / (1 - p)

(c) Repetition function

Fig. 6.2. Functional block primitives and their queueing equivalents

6.4 Simple Annotated Example 219

These functional blocks can then be translated into the appropriate queueing
paradigms such as those shown in Figs. 6.2(a)– 6.2(c). Measured speeds and
feeds for request rates, file sizes, CPU clock frequency, and so on are then used
to parameterize the respective PDQ queueing nodes. These data may come
from benchmark results, production systems, or simply as best engineering
estimates. You should always be prepared to review these parameters in the
future. The fact that you are documenting them in one place (the PDQ model)
is itself an important contribution to any engineering effort.

You should try to estimate resource demands at the lowest levels in the
presence of just one or a few requests, if possible. This one way to get reason-
able estimates of service demands. These values can then be combined to get
the application-level demands.

6.4 Simple Annotated Example

The annotated PDQ performance model in Sect. 6.4.1 is constructed by fol-
lowing the steps enumerated in Sect 6.3.1. In the case of more sophisticated
PDQ models that represent more complex computer systems, it is often ad-
visable to write separate Perl subroutines to represent the different computer
subsystems being modeled.

6.4.1 Creating the PDQ Model

In this section we construct, run, and validate a PDQ model of the simple
M/M/1 queue in Fig. 6.1. Measurement data and derived inputs for the PDQ
model are summarized in Table 6.1. The time-base must be common to all

Table 6.1. Measured and derived input parameters for the PDQ model

Parameter (symbol) Perl scalar variable

Measurement period (T) $MeasurePeriod = 3600;

Arrival count (A) $ArrivalCount = 1800;

Service visits (V) $ServiceVisits = 10;

Service time (S) $ServiceTime = 0.10;

Arrival rate (λ) $ArrivalRate = $ArrivalCount / $MeasurePeriod;

Service demand (D) $ServiceDemand = $ServiceVisits * $ServiceTime;

parameters. Here, the time-base is chosen to be seconds. We suppose that the
period for which the M/M/1 queue was measured is one hour. The count of
arrivals into the queue over that period was 1,800; and there were 10 repeated
visits to the server. The corresponding PDQ outputs and their validation
are summarized in Table 6.2. At this point, it might be worthwile for the

220 6 Pretty Damn Quick (PDQ)—A Slow Introduction

reader to quickly review the compendium of queueing symbols and equations
in Appendix E. From (2.27) the condition:

λ ≤ D−1

must be satisfied for the M/M/1 queue to be stable. In Perl, this becomes:

$ServiceCap = 1 / $ServiceDemand;

if($ArrivalRate >= $ServiceCap) { ...

which is a check for an error condition. See lines 17–23 in the following PDQ
script.

1 #! /usr/bin/perl

2 # mm1.pl

3

4 use pdq;

5

6 ## INPUTS ##

7 # Measured parameters

8 $MeasurePeriod = 3600; # seconds

9 $ArrivalCount = 1800;

10 $ServiceVisits = 10;

11

12 # Derived parameters

13 $ArrivalRate = $ArrivalCount / $MeasurePeriod;

14 $ServiceTime = 0.10; # seconds

15 $ServiceDemand = $ServiceVisits * $ServiceTime; # seconds

16

17 # Check the queue meets stability condition

18 $ServiceCap = 1 / $ServiceDemand;

19 if($ArrivalRate > $ServiceCap) {

20 print "Error: Arrival rate $ArrivalRate ";

21 print "exceeds service capacity ServiceCap !!\n";

22 exit;

23 }

24

25 $NodeName = "FIFO";

26 $WorkName = "Work";

27

28 # Initialize PDQ internal variables

29 pdq::Init("FIFO Example");

30

31 # Change the units used by PDQ::Report()

32 pdq::SetWUnit("Requests");

33 pdq::SetTUnit("Seconds");

34

35 # Define the FIFO queue

36 $pdq::nodes = pdq::CreateNode($NodeName, $pdq::CEN, $pdq::FCFS);

37

6.4 Simple Annotated Example 221

38 # Define the queueing circuit type and workload

39 $pdq::streams = pdq::CreateOpen($WorkName, $ArrivalRate);

40

41 # Define service demand due to the workload at FIFO

42 pdq::SetDemand($NodeName, $WorkName, $ServiceDemand);

43

44 # Solve the PDQ model

45 pdq::Solve($pdq::CANON);

46 # NOTE: Must use CANON-ical method since this is an open circuit

47

48 ## OUTPUTS ##

49 # Generate a report

50 pdq::Report();

The report generated by the call to PDQ::Report() (Sect. 6.6.14) is presented
in the next section.

6.4.2 Reading the PDQ Report

The following report is produced by mm1.pl in Sect 6.4.1. Note the appearance
of a Comments field described in Sect. 6.6.14.

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Sun Jan 4 15:43:18 2004 ***

5 *** for: FIFO Example ***

6 *** Ver: PDQ Analyzer v2.7 080202 ***

7 ***************************************

8 ***************************************

9

10 ****** Comments *******

11

12 Just a simple FIFO queue for demonstration purposes.

13

14 ***************************************

15 ****** PDQ Model INPUTS *******

16 ***************************************

17

18 Node Sched Resource Workload Class Demand

19 ---- ----- -------- -------- ----- ------

20 CEN FCFS FIFO Work TRANS 1.0000

21

22 Queueing Circuit Totals:

23

24 Streams: 1

25 Nodes: 1

26

27 WORKLOAD Parameters

222 6 Pretty Damn Quick (PDQ)—A Slow Introduction

28

29 Source per Sec Demand

30 -------- ------- ------

31 Work 0.5000 1.0000

32

33 ***************************************

34 ****** PDQ Model OUTPUTS *******

35 ***************************************

36

37 Solution Method: CANON

38

39 ****** SYSTEM Performance *******

40

41 Metric Value Unit

42 ----------------- ----- ----

43 Workload: "Work"

44 Mean Throughput 0.5000 Requests/Seconds

45 Response Time 2.0000 Seconds

46

47 Bounds Analysis:

48 Max Demand 1.0000 Requests/Seconds

49 Max Throughput 1.0000 Requests/Seconds

50

51 ****** RESOURCE Performance *******

52

53 Metric Resource Work Value Unit

54 --------- ------ ---- ----- ----

55 Throughput FIFO Work 0.5000 Requests/Seconds

56 Utilization FIFO Work 50.0000 Percent

57 Queue Length FIFO Work 1.0000 Requests

58 Residence Time FIFO Work 2.0000 Seconds

The banner includes the PDQ model name of the model that was passed as
an argument to PDQ::Init(). The banner is followed by the comment field,
if any.

6.4.3 Validating the PDQ Model

Finally, we compare the PDQ outputs with those expected using the appro-
priate queueing formulae in Appendix E.

For more complex models that combine a flow of requests between many
queues in a circuit, such manual calculations become extremely tedious and
error-prone. Similarly, you might want to use the same model code but simply
change the parameter values. In this sense, PDQ might be thought of as a
writes once, model anywhere tool.

6.5 Perl PDQ Module 223

Table 6.2. Validation of outputs from the PDQ report. The numbers in the upper
half of the table correspond to PDQ Inputs while the lower half corresponds to PDQ
Outputs seen in the PDQ report

Parameter (symbol) Calculated value

Arrival rate (λ) λ = 1800/3600 = 0.5 TPS
Service demand (D) D = 10 × 0.10 = 1.0 s

Residence time (R) R = 1/(1 − 0.5) = 2.0 s
Server utilization (ρ) ρ = 0.5 or 50%
Queue length (Q) Q = 0.5 × 2.0 = 1.0
Waiting time (W) W = 2.0− 0.5 = 1.5 s

6.5 Perl PDQ Module

In this section we describe the public data types, global variables, and public
procedures that are available in the PDQ Perl module. The PDQ module is
invoked with the statement:

use pdq;

at the beginning of the Perl script that defines the PDQ model.

6.5.1 PDQ Data Types

The following types are used in conjunction with PDQ library functions. See
the synopses of procedures for the correct syntax.

Nodes

$pdq::CEN Queueing center. Parameter in PDQ::CreateNode().
$pdq::DLY Delay center. Parameter in PDQ::CreateNode().

Service Disciplines

$pdq::FCFS First-come first-served parameter in PDQ::CreateNode().
$pdq::LCFS Last-come first-served parameter in PDQ::CreateNode().
$pdq::ISRV Infinite server parameter in PDQ::CreateNode().
$pdq::PSHR Processor sharing. Parameter in PDQ::CreateNode().

Workload Streams

Following Chap. 3, the workload associated with an open queueing circuit
is called a transaction workload stream. Workloads associated with closed
queueing circuits are called terminal or batch streams.

224 6 Pretty Damn Quick (PDQ)—A Slow Introduction

$pdq::BATCH A batch class workload is defined as having zero think-
time and is parameterized by the number of batch jobs.
Only consistent in the context of a closed queueing
circuit to distinguish from $pdq::TERM. Parameter in
PDQ::CreateClosed().

$pdq::TERM A terminal class workload has a think-time and is parame-
terized by the number of user processes. Only consistent in
the context of a closed queueing circuit to distinguish from
$pdq::BATCH. Parameter in PDQ::CreateClosed().

$pdq::TRANS A transaction class workload for an open queueing circuit.
This variable is now deprecated in PDQ. Parameter in
PDQ::CreateOpen().

Solution Methods

$pdq::APPROX Argument to PDQ::Solve() that causes PDQ to apply the
approximate MVA solution method. See Chap. 3 for the
conceptual background. Only consistent in the context of
solving a closed queueing circuit. An approximation to the
EXACT or iterative MVA solution method.

$pdq::CANON Argument to PDQ::Solve() that causes PDQ to apply the
canonical solution method. See Chap. 2 for the concep-
tual background. Only consistent in the context of an open
queueing circuit.

$pdq::EXACT Argument to PDQ::Solve() that causes PDQ to apply the
iterative MVA solution method. Only consistent in the con-
text of a closed queueing circuit.

6.5.2 PDQ Global Variables

The following global variables are apply to every PDQ model.
$pdq::nodes; Cumulative counter for the number of nodes returned

by PDQ::CreateNode().
$pdq::streams; Cumulative counter for the number of work-

load streams returned by PDQ CreateClosed() and
PDQ::CreateOpen().

$pdq::model; String containing the model name. Initialized via
PDQ::Init().

$pdq::DEBUG; Flag to toggle PDQ debug facility. Default DEBUG =
FALSE. Pass as an argument to PDQ SetDebug().

$pdq::tolerance; Terminates iteration in the approximate MVA solu-
tion method $pdq::APPROX.

6.6 Function Synopses 225

6.5.3 PDQ Functions

All PDQ functions in the Perl module have the PDQ:: prefix. Here, we group
them in the order of typical invocation.

1. PDQ::Init
2. PDQ::CreateOpen or PDQ::CreateClosed
3. PDQ::CreateNode or PDQ::CreateSingleNode
4. PDQ::SetDemand or PDQ::SetVisits
5. PDQ::SetWUnit, PDQ::SetTUnit
6. PDQ::Solve
7. PDQ::GetResponse, PDQ::GetThruput
8. PDQ::GetQueueLength, PDQ::GetResidenceTime
9. PDQ::GetUtilization

10. PDQ::Report

The next section provides a complete synopsis for each of these functions.

6.6 Function Synopses

Each function is presented in alphabetical order by name.

6.6.1 PDQ::CreateClosed

Syntax
PDQ::CreateClosed($workname, $class, $population, $think);

Description
PDQ::CreateClosed() is used to define the characteristics of a workload in a
closed-circuit queueing model. A separate call is required for each workload
stream that has different characteristics.

Argument Description
$workname String identifying the workload name in report files.
class Either $pdq::TERM or $pdq::BATCH type.
$population Number of requests in the closed circuit.
$think Think-time between requests.

Returns
PDQ::CreateClosed() returns the current number of workload streams
created in the model.

See Also
PDQ::CreateOpen(), PDQ::Init()

226 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Usage

PDQ::CreateClosed("DB_workers", $pdq::TERM, 57.4, 31.6);
PDQ::CreateClosed("fax_tasks", $pdq::BATCH, 10.0);

6.6.2 PDQ::CreateMultiNode

Syntax
PDQ::CreateMultiNode($servers, $workname, $nodetype, $schedtype);

Description
PDQ::CreateMultiNode() is used to define a multiserver queueing node in
an open-circuit queueing model (See Sect. 6.7.3). A separate call is required
for each instance of a multiserver queueing node.

Argument Description
$servers Integer number of servers.
$workname String to identify node in reports.
$nodetype Type of queue, e.g., $pdq::CEN.
$schedtype Service discipline, e.g.,$pdq::FCFS.

Returns
PDQ::CreateMultiNode() returns the current number of queueing nodes
created in the model.

See Also
PDQ::CreateNode(), PDQ::CreateSingleNode()

Usage

PDQ::CreateMultiNode(4, "cpu", $pdq::CEN, $pdq::FCFS);
PDQ::CreateNode("bus", $pdq::CEN, $pdq::ISRV);
PDQ::CreateNode("disk", $pdq::CEN, $pdq::FCFS);

6.6.3 PDQ::CreateNode

Syntax
PDQ::CreateNode($workname, $nodetype, $schedtype);

Description
PDQ::CreateNode() is used to define a queueing node in either a closed
or an open-circuit queueing model. A separate call is required for each
instance of a queueing node. PDQ::CreateSingleNode() is now preferred.
PDQ::CreateNode() is maintained for backward compatibility but it may be
deprecated in future releases of PDQ.

6.6 Function Synopses 227

Argument Description
$workname String to identify node in reports.
$nodetype Type of queue, e.g., $pdq::CEN.
$schedtype Service discipline, e.g.,$pdq::FCFS.

Returns
PDQ::CreateNode() returns the current number of queueing nodes created
in the model.

See Also
PDQ::CreateSingleNode(), PDQ::PDQ::CreateMultiNode()

Usage

PDQ::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);
PDQ::CreateNode("bus", $pdq::CEN, $pdq::ISRV);
PDQ::CreateNode("disk", $pdq::CEN, $pdq::FCFS);

6.6.4 PDQ::CreateOpen

Syntax
PDQ::CreateOpen($workname, $lambda);

Description
PDQ::CreateOpen() defines a stream in an open-circuit queueing model. A
separate call is required for each workload instance.

Argument Description
$workname String to identify workload in report files.
$lambda Arrival rate per unit time into the open circuit.

Returns
PDQ::CreateOpen() returns the current number of open workloads created
in the model.

See Also
PDQ::CreateClosed(), PDQ::Init()

Usage

PDQ::CreateOpen("IO_Cmds", 10.0);

228 6 Pretty Damn Quick (PDQ)—A Slow Introduction

6.6.5 PDQ::CreateSingleNode

Syntax
PDQ::CreateSingleNode($workname, $nodetype, $schedtype);

Description
PDQ::CreateSingleNode() is used to define a queueing node in either a
closed or an open-circuit queueing model. Equivalent to PDQ::CreateNode().
A separate call is required for each instance of a single queueing node.

Argument Description
$workname String to identify node in reports.
$nodetype Type of queue, e.g., $pdq::CEN.
$schedtype Service discipline, e.g.,$pdq::FCFS.

Returns
PDQ::CreateSingleNode() returns the current number of queueing nodes
created in the model.

See Also
PDQ::CreateNode(), PDQ::CreateMultiNode(), PDQ::Init()

Usage

PDQ::CreateSingleNode("cpu", $pdq::CEN, $pdq::FCFS);
PDQ::CreateSingleNode("bus", $pdq::CEN, $pdq::ISRV);
PDQ::CreateSingleNode("disk", $pdq::CEN, $pdq::FCFS);

6.6.6 PDQ::GetLoadOpt

Syntax
PDQ::GetLoadOpt($class, $workname);

Description
PDQ::GetLoadOpt is used to determine the optimal system load for the
specified workload in a closed circuit.

Argument Description
$class Only $pdq::TERM or $pdq::BATCH.
$workname String to identify workload in report files.

Returns
PDQ::GetLoadOpt returns the optimal user load as a decimal number. See
Sect. 5.3.3 for the conceptual details.

6.6 Function Synopses 229

See Also
PDQ::GetThruput, PDQ::GetResponse

Usage

$lopt = PDQ::GetLoadOpt("intranet", 10.0);
printf("N*(%s): %3.4f\n","intranet users", $lopt);

6.6.7 PDQ::GetQueueLength

Syntax
PDQ::GetQueueLength($nodename, $workname, $class);

Description
PDQ::GetQueueLength() is used to determine the queue length of the
designated service node by the specified workload. It should only be called
after the PDQ model has been solved.

Argument Description
$nodename Name of the queueing node.
$workname Name of the workload.
$class One of $pdq::TRANS, $pdq::TERM, or $pdq::BATCH.

Returns
PDQ::GetQueueLength() returns the queue length as a decimal value.

See Also
PDQ::GetResidenceTime(), PDQ::GetUtilization(),

Usage

PDQ::Solve();
...
$ql = PDQ::GetQueueLength("disk", "IO_Cmds", $pdq::TRANS);
printf("R(%s): %3.4f\n","IO_Cmds", $ql);

6.6.8 PDQ::GetResidenceTime

Syntax
PDQ::GetResidenceTime($nodename, $workname, $class);

Description
PDQ::GetResidenceTime() is used to determine the residence time at the
designated queueing node by the specified workload. It should only be called
after the PDQ model has been solved.

230 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Argument Description
$nodename Name of the queueing node.
$workname Name of the workload.
$class One of $pdq::TRANS, $pdq::TERM, or $pdq::BATCH.

Returns
PDQ::GetResidenceTime() returns the residence time as a decimal value.

See Also
PDQ::GetQueueLength(), PDQ::GetUtilization()

Usage

PDQ::Solve();
...
$rez = PDQ::GetResidenceTime("disk", "IO_Cmds", $pdq::TRANS);
printf("R(%s): %3.4f\n","IO_Cmds", $rez);

6.6.9 PDQ::GetResponse

Syntax
PDQ::GetResponse($class, $workname);

Description
PDQ::GetResponse() is used to determine the system response time for the
specified workload.

Argument Description
$class One of $pdq::TRANS, $pdq::TERM, or $pdq::BATCH.
$workname Name of the workload.

Returns
PDQ GetResponse() returns the system response time for the specified
workload.

See Also
PDQ::CreateClosed(), PDQ::Init(), PDQ::CreateOpen()

Usage

$rtime = PDQ_GetResponse($pdq::TRANS, "IO_Cmds");
printf("R(%s): %3.4f\n","IO_Cmds", $rtime);

6.6 Function Synopses 231

6.6.10 PDQ::GetThruMax

Syntax
PDQ::GetThruMax($class, $workname);

Description
PDQ::GetThruMax is used to determine the upper bound on the system
throughput for the specified workload in a closed circuit.

Argument Description
$class Only $pdq::TERM or $pdq::BATCH.
$workname String to identify workload in report files.

Returns
PDQ::GetThruMax returns the upper bound on throughput as a decimal
number. See Chap. 5 for the conceptual details.

See Also
PDQ::GetThruput

Usage

$xmax = PDQ::GetThruMax(\$pdq::TERM, "database");
printf("N*(%s): %3.4f\n","database users", $xmax);

6.6.11 PDQ::GetThruput

Syntax
PDQ::GetThruput($class, $workname);

Description
PDQ::GetThruput() is used to determine the system throughput for the
specified workload.

Argument Description
$class One of $pdq::TRANS, $pdq::TERM, or $pdq::BATCH.
$workname A string containing the name of the workload.

Returns
PDQ::GetThruput() returns the system throughput for the specified work-
load.

See Also
PDQ::GetResponse()

232 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Usage

$tput = PDQ::GetThruput(TRANS, "IO_Cmds");
printf("R(%s): %3.4f\n", "IO_Cmds", $tput);

6.6.12 PDQ::GetUtilization

Syntax
PDQ::GetUtilization($nodename, $workname);

Description
PDQ::GetUtilization() is used to determine the utilization of the desig-
nated queueing node by the specified workload. Should only be called after
the PDQ model has been solved.

Argument Description
$nodename Name of the queueing node.
$workname Name of the workload.

Returns
PDQ::GetUtilization() returns the utilization as a decimal fraction in the
range 0.0 to 1.0.

See Also
PDQ::GetResponse(), PDQ::GetThruput(), PDQ::Solve()

Usage

PDQ::Solve();
...
$util = PDQ::GetUtilization("disk", "IO_Cmds");
printf("R(%s): %3.4f\n","IO_Cmds", $util);

6.6.13 PDQ::Init

Syntax
PDQ::Init($modelname);

Description
PDQ::Init() initializes all internal PDQ variables. Must be called prior to
any other PDQ function. It also resets PDQ variables so that there is no
separate cleanup function call required. Can be called an arbitrary number
of times in the same model.

6.6 Function Synopses 233

Argument Description
$modelname The name of the performance model that will appear

in the PDQ report banner. String length should not
exceed 24 characters (including spaces).

Returns
None.

See Also
PDQ::Solve(), PDQ::Report()

Usage

PDQ::Init("File Server");
...
PDQ::Solve($pdq::APPROX);
PDQ::Report();
...
PDQ::Init("Client Workstation");
...
PDQ::Solve($pdq::CANON);
PDQ::Report();

6.6.14 PDQ::Report

Syntax
PDQ::Report();

Description
PDQ::Report() generates a standardized output format which includes the
total number of PDQ nodes and streams, system performance measures,
such as throughputs and response times for each workload stream, together
with nodal performance measures, such as node utilization and queue
lengths. Example PDQ reports can be found in Sect. 6.7 and throughout
the remainder of this book. The default output device for the PDQ report is
the terminal window where the PDQ program is run. On a unix or Linux
K platform, the most expeditious way to save a PDQ report to a file is
to include the shell I/O redirect command (>) when the PDQ program is
executed. Non-unix platforms may require the use of the Perl open and
close functions [Wall et al. 2003]. The function PDQ::Report must not be
called before PDQ::Solve. Comments can be included at the beginning of the
report by including them in a file named comments.pdq.

Returns
None.

234 6 Pretty Damn Quick (PDQ)—A Slow Introduction

See Also
PDQ::Init(), PDQ::Solve()

Usage

...
PDQ::Solve(\$pdq::APPROX);
PDQ::Report();

6.6.15 PDQ::SetDebug

Syntax
PDQ::SetDebug($flag);

Description
PDQ::SetDebug() enables diagnostic printout of PDQ internal variables and
procedures used in solving a model.

Argument Description
$flag Set to 1 or 0 to toggle the debug facility.

Returns None. Output is written to a file called debug.log.

Description
PDQ::Init()

Usage

PDQ::SetDebug(TRUE);
$nodes = PDQ::CreateNode("server", $pdq::CEN, $pdq::FCFS);
$streams = PDQ::CreateOpen("work", 0.5);
PDQ::SetDemand("server", "work", 1.0);
...
PDQ::SetDebug(FALSE);

Produces the following output in the file debug.log.

DEBUG: PDQ::CreateNode
Entering
Node[0]: CEN FCFS "server"
Exiting
Stream[0]: TRANS "work"; Lambda: 0.5

DEBUG: PDQ::SetDemand()
Entering

DEBUG: getnode_index()
Entering
node:"server" index: 0
Exiting

6.6 Function Synopses 235

DEBUG: getjob_index()
Entering
stream:"work" index: 0
Exiting

DEBUG: PDQ::SetDemand()
Exiting

6.6.16 PDQ::SetDemand

Syntax
PDQ::SetDemand($nodename, $workname, $time);

Description
PDQ::SetDemand() is used to define the service demand of a specific work-
load. The named node and workload must exist. A separate call is required
for each workload stream that accesses the same node. Note that because
of the reporting structure in PDQ, use of SetDemand and SetVisits are
mutually exclusive.

Argument Description
$nodename Name of the queueing node.
$workname Name of the workload.
$time Service demand due to workload $workname.

Returns
None.

See Also
PDQ::CreateClosed(), PDQ::CreateNode(), PDQ::CreateOpen(),
PDQ::SetVisits()

Usage

PDQ::CreateClosed("DB_Workers", $pdq::TERM, 57.4, 31.6);
PDQ::CreateClosed("Fax_Report", $pdq::BATCH, 10.0);
...
PDQ::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);
PDQ::CreateNode("cpu_dly", $pdq::CEN, $pdq::ISRV);
...
PDQ::SetDemand("cpu", "DB_Workers", 0.130);
PDQ::SetDemand("cpu_dly", "DB_Workers", 0.003);
PDQ::SetDemand("cpu", "Fax_Report", 3.122);
PDQ::SetDemand("cpu_dly", "Fax_Report", 0.001);

236 6 Pretty Damn Quick (PDQ)—A Slow Introduction

6.6.17 PDQ::SetTUnit

Syntax
PDQ::SetTUnit($unitname);

Description
PDQ::SetTUnit() changes the name of the time unit that appears in the
PDQ report. The default time unit is seconds.

Argument Description
$unitname Name of the measurement unit.

Returns
None.

See Also
PDQ::Report()

Usage

PDQ::SetTUnit("Minutes");

6.6.18 PDQ::SetVisits

Syntax
PDQ::SetVisits($nodename, $workname, $visits, $time);

Description
PDQ SetVisits() is used to define the service demand of a specific workload
in terms of the explicit service time and visit count. The named node and
workload must exist. A separate call is required for each workload stream
that accesses the same node. The difference from PDQ SetDemand() is in
the way node-level performance metrics are formatted in the output from
PDQ Report(). The number of visits shows up in the PDQ Model INPUTS
section and throughput in the RESOURCE Performance section shows up as
counts per unit time. Note that because of the reporting structure in PDQ,
use of SetVisits and SetDemand are mutually exclusive.

Argument Description
$nodename Name of queueing node.
$workname Name of the workload.
$visits Average number of visits to that node.
$time Service time per visit by workload.

Returns
None.

6.6 Function Synopses 237

See Also
PDQ::CreateClosed(), PDQ::CreateNode(), PDQ::CreateOpen(),
PDQ::SetDemand()

Usage

$streams = PDQ::CreateClosed("DB_Workers", $pdq::TERM, 57.4, 31.6);
$nodes = PDQ::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);
PDQ::SetVisits("cpu", "DB_Workers", 10.0, 0.013);
...

6.6.19 PDQ::SetWUnit

Syntax
PDQ::SetWUnit($unitname);

Description
PDQ::SetWUnit() changes the name of the work unit that appears in the
PDQ report. The default unit of work is called Job.

Argument Description
$unitname Name of the measurement unit.

Returns
None.

See Also
PDQ::Report()

Usage

PDQ::SetWUnit("I/O_Reqs");

6.6.20 PDQ::Solve

Syntax
PDQ::Solve($method);

Description
PDQ::Solve() is called after the PDQ model has been created. An appro-
priate solution method must be passed as an argument or an error will be
reported at run-time.

Argument Description
$method One of $pdq::EXACT, $pdq::APPROX or

$pdq::CANON.

238 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Returns
None.

See Also
PDQ::Solve()

Usage

PDQ::Solve($pdq::APPROX);
PDQ::Report();

6.7 Classic Queues in PDQ

The remaining sections of this chapter contain the actual Perl PDQ codes and
resulting reports for both the single queues discussed theoretically in Chap. 2
and the circuits of queues presented in Chap. 3. Where appropriate, we use
the Kendall notation of Sect. 2.9.2. The intent is to provide the reader with
a broad view of the variety of applications for PDQ in analyzing computer
systems. All the Perl sources can be downloaded from the PDQ section of the
Web site www.perfdynamics.com.

6.7.1 Delay Node in PDQ

A delay node simply provides a constant service time without any queueing.
One of the most common applications of a delay node in computer system
performance analysis is the think time associated with the closed queueing
circuit of Sect. 2.11.1. To set up an IS in PDQ there are two steps:

1. Create a PDQ node with service discipline $pdq::ISRV (see Sect. 6.5.1),
instead of $pdq::FCFS.

2. Define the magnitude of the delay using the SetDemand() function.

Delay nodes are also commonly used in hardware-oriented performance anal-
ysis of the type discussed in Chap. 7.

6.7.2 M/M/1 in PDQ

Kendall notation (see Sect. 2.9.2):
M : Memoryless arrivals. Poisson process with rate λ
M : Memoryless service. Exponentially distributed with mean period S
1: Single server with unconstrained queue size.

Refer to the annotated PDQ model mm1.pl in Sect. 6.4.1.

6.7 Classic Queues in PDQ 239

6.7.3 M/M/m in PDQ

Kendall notation (see Sect. 2.9.2):
M : Memoryless arrivals. Poisson process with rate λ
M : Memoryless service. Exponentially distributed with mean period S
m: Multiple servers each with mean utilization λS/m

The current implementation of PDQ::CreateMultiNodedescribed in Sect. 6.6.2
is evaluated using the approximation discussed in Sect. 2.7 of Chap. 2.

6.7.4 M/M/1//N in PDQ

Kendall notation (see Sect. 2.9.2):
M : Memoryless arrivals. Poisson process with rate λ
M : Memoryless service. Exponentially distributed with mean period S
1: Single server.
N : Finite number of requests and finite queue length.

This is the classic single-server repairman model for the case m = 1 discussed
in Sect. 2.8.3 of Chap. 2.

#!/usr/bin/perl

mm1n.pl

use pdq;

Model specific variables

$requests = 100;

$thinktime = 300.0;

$serviceTime = 0.63;

$nodeName = "CPU";

$workName = "compile";

Initialize the model

pdq::Init("M/M/1//N Model");

Define the queueing circuit and workload

$pdq::streams = pdq::CreateClosed($workName, $pdq::TERM, $requests,

$thinktime);

Define the queueing node

$pdq::nodes = pdq::CreateNode($nodeName, $pdq::CEN, $pdq::FCFS);

Define service time for the work on that node

pdq::SetDemand($nodeName, $workName, $serviceTime);

Solve the model

pdq::Solve($pdq::EXACT);

240 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Report the PDQ results

pdq::Report();

6.7.5 M/M/m//N in PDQ

Kendall notation (see Sect. 2.9.2):
M : Memoryless arrivals. Poisson process with rate λ
M : Memoryless service. Exponentially distributed with mean period S
m: Multiple servers.
N : Finite number of requests and finite queue length.

This is the classic repairman model presented in Chap. 2. It can be solved in
PDQ as a load-dependent server like the one discussed in Sect. 3.9.4, Chap. 3.
The Perl code is essentially the same as fesc.pl in Sect. 6.7.11, so we do not
reproduce it here.

6.7.6 Feedforward Circuits in PDQ

What follows is the PDQ code for the three-stage tandem circuit discussed in
Sect. 3.4.2 of Chap. 3.

#!/usr/bin/perl

feedforward.pl

use pdq;

$ArrivalRate = 0.10;

$WorkName = "Requests";

$NodeName1 = "Queue1";

$NodeName2 = "Queue2";

$NodeName3 = "Queue3";

pdq::Init("Feedforward Circuit");

$pdq::streams = pdq::CreateOpen($WorkName, $ArrivalRate);

$pdq::nodes = pdq::CreateNode($NodeName1, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($NodeName2, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($NodeName3, $pdq::CEN, $pdq::FCFS);

pdq::SetDemand($NodeName1, $WorkName, 1.0);

pdq::SetDemand($NodeName2, $WorkName, 2.0);

pdq::SetDemand($NodeName3, $WorkName, 3.0);

pdq::Solve($pdq::CANON);

pdq::Report();

The PDQ report looks like this.

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Mon Jan 5 12:38:25 2004 ***

5 *** for: Feedforward Circuit ***

6.7 Classic Queues in PDQ 241

6 *** Ver: PDQ Analyzer v2.7 080202 ***

7 ***************************************

8 ***************************************

9

10 ***************************************

11 ****** PDQ Model INPUTS *******

12 ***************************************

13

14 Node Sched Resource Workload Class Demand

15 ---- ----- -------- -------- ----- ------

16 CEN FCFS Queue1 Requests TRANS 1.0000

17 CEN FCFS Queue2 Requests TRANS 2.0000

18 CEN FCFS Queue3 Requests TRANS 3.0000

19

20 Queueing Circuit Totals:

21

22 Streams: 1

23 Nodes: 3

24

25 WORKLOAD Parameters

26

27 Source per Sec Demand

28 -------- ------- ------

29 Requests 0.1000 6.0000

30

31 ***************************************

32 ****** PDQ Model OUTPUTS *******

33 ***************************************

34

35 Solution Method: CANON

36

37 ****** SYSTEM Performance *******

38

39 Metric Value Unit

40 ----------------- ----- ----

41 Workload: "Requests"

42 Mean Throughput 0.1000 Job/Sec

43 Response Time 7.8968 Sec

44

45 Bounds Analysis:

46 Max Demand 0.3333 Job/Sec

47 Max Throughput 0.3333 Job/Sec

48

49 ****** RESOURCE Performance *******

50

51 Metric Resource Work Value Unit

52 --------- ------ ---- ----- ----

53 Throughput Queue1 Requests 0.1000 Job/Sec

54 Utilization Queue1 Requests 10.0000 Percent

242 6 Pretty Damn Quick (PDQ)—A Slow Introduction

55 Queue Length Queue1 Requests 0.1111 Job

56 Residence Time Queue1 Requests 1.1111 Sec

57

58 Throughput Queue2 Requests 0.1000 Job/Sec

59 Utilization Queue2 Requests 20.0000 Percent

60 Queue Length Queue2 Requests 0.2500 Job

61 Residence Time Queue2 Requests 2.5000 Sec

62

63 Throughput Queue3 Requests 0.1000 Job/Sec

64 Utilization Queue3 Requests 30.0000 Percent

65 Queue Length Queue3 Requests 0.4286 Job

66 Residence Time Queue3 Requests 4.2857 Sec

We see that the PDQ values for the utilizations, residence times, and queue
lengths are in complete agreement with those in Table 3.1 in Chap. 3.

6.7.7 Feedback Circuits in PDQ

The following PDQ model represents the feedback queue discussed in Sect. 3.4.3
of Chap. 3.

#! /usr/bin/perl

feedback.pl

use pdq;

$rx_prob = 0.30;

$inter_arriv_rate = 0.5;

$service_time = 0.75;

$mean_visits = 1.0 / (1.0 - $rx_prob);

Initialize the model

pdq::Init("Open Feedback");

Define the queueing center

$pdq::nodes = pdq::CreateNode("channel", $pdq::CEN, $pdq::FCFS);

Define the workload and circuit type

$pdq::streams = pdq::CreateOpen("message", $inter_arriv_rate);

Define service demand due to workload

pdq::SetVisits("channel", "message", $mean_visits, $service_time);

Solve and generate a PDQ report

pdq::Solve($pdq::CANON);

pdq::Report();

The PDQ report looks like this:

6.7 Classic Queues in PDQ 243

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Tue Jan 6 11:02:24 2004 ***

5 *** for: Open Feedback ***

6 *** Ver: PDQ Analyzer v2.7 080202 ***

7 ***************************************

8

9 ***************************************

10 ****** PDQ Model INPUTS *******

11 ***************************************

12

13 Node Sched Resource Workload Class Visits Service Demand

14 ---- ----- -------- -------- ----- ------ ------- ------

15 CEN FCFS channel message TRANS 1.4286 0.7500 1.0714

16

17 Queueing Circuit Totals:

18

19 Streams: 1

20 Nodes: 1

21

22 WORKLOAD Parameters

23

24 Source per Sec Demand

25 -------- ------- ------

26 message 0.5000 1.0714

27

28 ***************************************

29 ****** PDQ Model OUTPUTS *******

30 ***************************************

31

32 Solution Method: CANON

33

34 ****** SYSTEM Performance *******

35 Metric Value Unit

36 ----------------- ----- ----

37 Workload: "message"

38 Mean Throughput 0.5000 Job/Sec

39 Response Time 2.3077 Sec

40

41 Bounds Analysis:

42 Max Demand 0.9333 Job/Sec

43 Max Throughput 0.9333 Job/Sec

44

45 ****** RESOURCE Performance *******

46 Metric Resource Work Value Unit

47 --------- ------ ---- ----- ----

48 Throughput channel message 0.7143 Visits/Sec

49 Utilization channel message 53.5714 Percent

244 6 Pretty Damn Quick (PDQ)—A Slow Introduction

50 Queue Length channel message 1.1538 Job

51 Residence Time channel message 2.3077 Sec

52 Waiting Time channel message 0.8654 Sec

We see that the residence time in the satellite telemetry channel, reported
on line 51 of the PDQ report, is 2.3077 s, which agrees with the manual
calculation performed in Example 3.2.

6.7.8 Parallel Queues in Series

The following PDQ queueing circuit represents the passport office discussed
in Sect. 3.4.5 of Chap. 3.

#!/usr/bin/perl

passport.pl

use pdq;

Input parameters

$ArrivalRate = 15.0 / 3600;

$WorkName = "Applicant";

$NodeName1 = "Window1";

$NodeName2 = "Window2";

$NodeName3 = "Window3";

$NodeName4 = "Window4";

Branching probabilities and weights

$p12 = 0.30;

$p13 = 0.70;

$p23 = 0.20;

$p32 = 0.10;

$L3 = ($p13 + $p23 * $p12) / (1 - $p23 * $p32);

$L2 = $p12 + $p32 * $w3;

Initialize and solve the PDQ model

pdq::Init("Passport Office");

$pdq::streams = pdq::CreateOpen($WorkName, $ArrivalRate);

$pdq::nodes = pdq::CreateNode($NodeName1, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($NodeName2, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($NodeName3, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($NodeName4, $pdq::CEN, $pdq::FCFS);

pdq::SetDemand($NodeName1, $WorkName, 20);

pdq::SetDemand($NodeName2, $WorkName, 600 * $L2);

pdq::SetDemand($NodeName3, $WorkName, 300 * $L3);

pdq::SetDemand($NodeName4, $WorkName, 60);

6.7 Classic Queues in PDQ 245

pdq::Solve($pdq::CANON);

pdq::Report();

The PDQ report shows:

****** Pretty Damn Quick REPORT *******

*** of : Mon Jan 5 14:01:37 2004 ***

*** for: Passport Office ***

*** Ver: PDQ Analyzer v2.7 080202 ***

****** PDQ Model INPUTS *******

Node Sched Resource Workload Class Demand

---- ----- -------- -------- ----- ------

CEN FCFS Window1 Applicant TRANS 20.0000

CEN FCFS Window2 Applicant TRANS 226.5306

CEN FCFS Window3 Applicant TRANS 232.6531

CEN FCFS Window4 Applicant TRANS 60.0000

Queueing Circuit Totals:

Streams: 1

Nodes: 4

WORKLOAD Parameters

Source per Sec Demand

-------- ------- ------

Applicant 0.0042 539.1837

****** PDQ Model OUTPUTS *******

Solution Method: CANON

****** SYSTEM Performance *******

Metric Value Unit

----------------- ----- ----

Workload: "Applicant"

Mean Throughput 0.0042 Job/Sec

246 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Response Time 11738.1818 Sec

Bounds Analysis:

Max Demand 0.0043 Job/Sec

Max Throughput 0.0043 Job/Sec

****** RESOURCE Performance *******

Metric Resource Work Value Unit

--------- ------ ---- ----- ----

Throughput Window1 Applicant 0.0042 Job/Sec

Utilization Window1 Applicant 8.3333 Percent

Queue Length Window1 Applicant 0.0909 Job

Residence Time Window1 Applicant 21.8182 Sec

Throughput Window2 Applicant 0.0042 Job/Sec

Utilization Window2 Applicant 94.3878 Percent

Queue Length Window2 Applicant 16.8182 Job

Residence Time Window2 Applicant 4036.3636 Sec

Throughput Window3 Applicant 0.0042 Job/Sec

Utilization Window3 Applicant 96.9388 Percent

Queue Length Window3 Applicant 31.6667 Job

Residence Time Window3 Applicant 7600.0000 Sec

Throughput Window4 Applicant 0.0042 Job/Sec

Utilization Window4 Applicant 25.0000 Percent

Queue Length Window4 Applicant 0.3333 Job

Residence Time Window4 Applicant 80.0000 Sec

From this PDQ report we see that the PDQ results are identical to those
from the non-PDQ Perl program passcalc.pl constructed in Sect. 3.4.5 of
Chap. 3.

6.7.9 Multiple Workloads in PDQ

What follows is the Perl code for the multicomponent wireless server upgrade
analysis presented in Sect. 3.7 of Chap. 3. Since this PDQ model is a closed
circuit, it uses the MVA algorithm incorporated into PDQ.

#!/usr/bin/perl

mwl.pl

use pdq;

**

Parameters from workload measurements *

**

$maxBatJobs = 10;

6.7 Classic Queues in PDQ 247

$maxIntJobs = 25;

$intThink = 30;

$batThink = 0.0;

$cpuBatBusy = 600.0;

$dskBatBusy = 54.0;

$cpuIntBusy = 47.6;

$dskIntBusy = 428.4;

$batchCompletes = 600;

$interCompletes = 476;

$cpuSpeedup = 5; # CPU upgrade in relative units

$totCpuBusy = $cpuBatBusy + $cpuIntBusy;

$totDskBusy = $dskBatBusy + $dskIntBusy;

$totalCompletes = $batchCompletes + $interCompletes;

$maxAggJobs = $maxBatJobs + $maxIntJobs;

$aggThink = ($interCompletes / $totalCompletes) * $intThink;

$aggCpuDemand = $totCpuBusy / $totalCompletes;

$aggDskDemand = $totDskBusy / $totalCompletes;

**

Create and analyze models based on the aggregate workload *

**

pdq::Init("Aggregate BASELINE");

$pdq::nodes = pdq::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("dsk", $pdq::CEN, $pdq::FCFS);

$pdq::streams = pdq::CreateClosed("aggwork", $pdq::TERM,

$maxAggJobs, $aggThink);

pdq::SetDemand("cpu", "aggwork", $aggCpuDemand);

pdq::SetDemand("dsk", "aggwork", $aggDskDemand);

pdq::Solve($pdq::EXACT);

pdq::Report();

pdq::Init("Aggregate UPGRADE");

$pdq::nodes = pdq::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("dsk", $pdq::CEN, $pdq::FCFS);

$pdq::streams = pdq::CreateClosed("aggwork", $pdq::TERM,

$maxAggJobs, $aggThink);

pdq::SetDemand("cpu", "aggwork", $aggCpuDemand / $cpuSpeedup);

pdq::Solve($pdq::EXACT);

pdq::Report();

248 6 Pretty Damn Quick (PDQ)—A Slow Introduction

**

Now analyze models based on the workload components *

**

pdq::Init("Component BASELINE");

$pdq::nodes = pdq::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("dsk", $pdq::CEN, $pdq::FCFS);

$pdq::streams = pdq::CreateClosed("batch", $pdq::BATCH,

$maxBatJobs, $batThink);

pdq::SetDemand("cpu", "batch", $cpuBatBusy / $batchCompletes);

pdq::SetDemand("dsk", "batch", $dskBatBusy / $batchCompletes);

$pdq::streams = pdq::CreateClosed("online", $pdq::TERM,

$maxIntJobs, $intThink);

pdq::SetDemand("cpu", "online", $cpuIntBusy / $interCompletes);

pdq::SetDemand("dsk", "online", $dskIntBusy / $interCompletes);

pdq::Solve($pdq::EXACT);

pdq::Report();

pdq::Init("Component UPGRADE");

$pdq::nodes = pdq::CreateNode("cpu", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("dsk", $pdq::CEN, $pdq::FCFS);

$pdq::streams = pdq::CreateClosed("batch", $pdq::BATCH,

$maxBatJobs, $batThink);

pdq::SetDemand("cpu", "batch",

($cpuBatBusy / $batchCompletes) / $cpuSpeedup);

pdq::SetDemand("dsk", "batch", $dskBatBusy / $batchCompletes);

$pdq::streams = pdq::CreateClosed("online", $pdq::TERM,

$maxIntJobs, $intThink);

pdq::SetDemand("cpu", "online",

($cpuIntBusy / $interCompletes) / $cpuSpeedup);

pdq::SetDemand("dsk", "online", $dskIntBusy / $interCompletes);

pdq::Solve($pdq::EXACT);

pdq::Report();

The PDQ report that follows (mwlbase agg.rpt) is for the baseline model
with an aggregated workload parameterized in Table 3.3 of Sect. 3.7.3.

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Fri Jun 18 08:37:58 2004 ***

5 *** for: Aggregate BASELINE ***

6.7 Classic Queues in PDQ 249

6 *** Ver: PDQ Analyzer v2.8 120803 ***

7 ***************************************

8 ***************************************

9

10 ***************************************

11 ****** PDQ Model INPUTS *******

12 ***************************************

13

14 Node Sched Resource Workload Class Demand

15 ---- ----- -------- -------- ----- ------

16 CEN FCFS cpu aggwork TERML 0.6019

17 CEN FCFS dsk aggwork TERML 0.4483

18

19 Queueing Circuit Totals:

20

21 Clients: 35.00

22 Streams: 1

23 Nodes: 2

24

25 WORKLOAD Parameters

26

27 Client Number Demand Thinktime

28 ---- ------ ------ ---------

29 aggwork 35.00 1.0502 13.27

30

31 ***************************************

32 ****** PDQ Model OUTPUTS *******

33 ***************************************

34

35 Solution Method: EXACT

36

37 ****** SYSTEM Performance *******

38

39 Metric Value Unit

40 ----------------- ----- ----

41 Workload: "aggwork"

42 Mean Throughput 1.6373 Job/Sec

43 Response Time 8.1056 Sec

44 Mean Concurrency 13.2711 Job

45 Stretch Factor 7.7182

46

47 Bounds Analysis:

48 Max Throughput 1.6615 Job/Sec

49 Min Response 1.0502 Sec

50 Max Demand 0.6019 Sec

51 Tot Demand 1.0502 Sec

52 Think time 13.2714 Sec

53 Optimal Clients 23.7956 Clients

54

250 6 Pretty Damn Quick (PDQ)—A Slow Introduction

55 ****** RESOURCE Performance *******

56

57 Metric Resource Work Value Unit

58 --------- ------ ---- ----- ----

59 Throughput cpu aggwork 1.6373 Job/Sec

60 Utilization cpu aggwork 98.5410 Percent

61 Queue Length cpu aggwork 10.6855 Job

62 Residence Time cpu aggwork 6.5264 Sec

63

64 Throughput dsk aggwork 1.6373 Job/Sec

65 Utilization dsk aggwork 73.4036 Percent

66 Queue Length dsk aggwork 2.5855 Job

67 Residence Time dsk aggwork 1.5792 Sec

The pertinent values of the aggregate throughput and response time can be
read off from lines 42 and 43, respectively. The next PDQ report (mwlbase cmp.rpt)
is for the baseline model using the parameters for the component workloads
in Table 3.4 of Sect. 3.7.4.

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Fri Jun 18 08:37:58 2004 ***

5 *** for: Component BASELINE ***

6 *** Ver: PDQ Analyzer v2.8 120803 ***

7 ***************************************

8 ***************************************

9

10 ***************************************

11 ****** PDQ Model INPUTS *******

12 ***************************************

13

14 Node Sched Resource Workload Class Demand

15 ---- ----- -------- -------- ----- ------

16 CEN FCFS cpu batch BATCH 1.0000

17 CEN FCFS dsk batch BATCH 0.0900

18 CEN FCFS cpu online TERML 0.1000

19 CEN FCFS dsk online TERML 0.9000

20

21 Queueing Circuit Totals:

22 Jobs: 10.00

23 Clients: 25.00

24 Streams: 2

25 Nodes: 2

26

27 WORKLOAD Parameters

28 Job MPL Demand

29 --- --- ------

30 batch 10.00 1.0900

31

6.7 Classic Queues in PDQ 251

32 Client Number Demand Thinktime

33 ---- ------ ------ ---------

34 online 25.00 1.0000 30.00

35

36 ***************************************

37 ****** PDQ Model OUTPUTS *******

38 ***************************************

39

40 Solution Method: EXACT

41

42 ****** SYSTEM Performance *******

43

44 Metric Value Unit

45 ----------------- ----- ----

46 Workload: "batch"

47 Mean Throughput 0.9265 Job/Sec

48 Response Time 10.7937 Sec

49 Mean Concurrency 10.0000 Job

50 Stretch Factor 9.9025

51

52 Bounds Analysis:

53 Max Throughput 1.0000 Job/Sec

54 Min Response 1.0900 Sec

55 Max Demand 1.0000 Sec

56 Tot Demand 1.0900 Sec

57 Optimal Jobs 1.0900 Jobs

58

59 Workload: "online"

60 Mean Throughput 0.7353 Job/Sec

61 Response Time 3.9978 Sec

62 Mean Concurrency 2.9397 Job

63 Stretch Factor 3.9978

64

65 Bounds Analysis:

66 Max Throughput 1.1111 Job/Sec

67 Min Response 1.0000 Sec

68 Max Demand 0.9000 Sec

69 Tot Demand 1.0000 Sec

70 Think time 30.0000 Sec

71 Optimal Clients 34.4444 Clients

72

73 ****** RESOURCE Performance *******

74

75 Metric Resource Work Value Unit

76 --------- ------ ---- ----- ----

77 Throughput cpu batch 0.9265 Job/Sec

78 Utilization cpu batch 92.6466 Percent

79 Queue Length cpu batch 9.7173 Job

80 Residence Time cpu batch 10.4886 Sec

252 6 Pretty Damn Quick (PDQ)—A Slow Introduction

81 Throughput dsk batch 0.9265 Job/Sec

82 Utilization dsk batch 8.3382 Percent

83 Queue Length dsk batch 0.2827 Job

84 Residence Time dsk batch 0.3051 Sec

85

86 Throughput cpu online 0.7353 Job/Sec

87 Utilization cpu online 7.3534 Percent

88 Queue Length cpu online 0.8496 Job

89 Residence Time cpu online 1.1553 Sec

90

91 Throughput dsk online 0.7353 Job/Sec

92 Utilization dsk online 66.1808 Percent

93 Queue Length dsk online 2.0902 Job

94 Residence Time dsk online 2.8424 Sec

The batch throughput and response time can be read off respectively from
lines 47 and 48, while the online throughput and response time appear re-
spectively on lines 60 and 61.

6.7.10 Priority Queueing in PDQ

This is the Perl code that compares priority queueing using the virtual server
approximation presented in Sect. 3.9.3.

#!/usr/bin/perl

shadowcpu.pl

use pdq;

$PRIORITY = 1; # Turn priority queueing on or off

$noPri = "CPU Scheduler with No Priority";

$priOn = "CPU Scheduler with Priority On";

sub GetProdU {

pdq::Init(""); # Don’t need a name string here

$pdq::streams = pdq::CreateClosed("Production", $pdq::TERM, 20.0, 20.0);

$pdq::nodes = pdq::CreateNode("CPU", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("DK1", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("DK2", $pdq::CEN, $pdq::FCFS);

pdq::SetDemand("CPU", "Production", 0.30);

pdq::SetDemand("DK1", "Production", 0.08);

pdq::SetDemand("DK2", "Production", 0.10);

pdq::Solve($pdq::APPROX);

return(pdq::GetUtilization("CPU", "Production", $pdq::TERM));

}

if ($PRIORITY) {

$Ucpu_prod = GetProdU();

}

6.7 Classic Queues in PDQ 253

pdq::Init(PRIORITY ? $priOn : $noPri);

Workloads

$pdq::streams = pdq::CreateClosed("Production", $pdq::TERM, 20.0, 20.0);

$pdq::streams = pdq::CreateClosed("Developmnt", $pdq::TERM, 15.0, 15.0);

Nodes

$pdq::nodes = pdq::CreateNode("CPU", $pdq::CEN, $pdq::FCFS);

if (PRIORITY) {

$pdq::nodes = pdq::CreateNode("shadCPU", $pdq::CEN, $pdq::FCFS);

}

$pdq::nodes = pdq::CreateNode("DK1", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("DK2", $pdq::CEN, $pdq::FCFS);

Service demands

pdq::SetDemand("CPU", "Production", 0.30);

if ($PRIORITY) {

pdq::SetDemand("shadCPU", "Developmnt", 1.00/(1 - $Ucpu_prod));

} else {

pdq::SetDemand("CPU", "Developmnt", 1.00);

}

pdq::SetDemand("DK1", "Production", 0.08);

pdq::SetDemand("DK1", "Developmnt", 0.05);

pdq::SetDemand("DK2", "Production", 0.10);

pdq::SetDemand("DK2", "Developmnt", 0.06);

pdq::Solve($pdq::APPROX);

pdq::Report();

What follows is the PDQ report for the case of preemptive queueing.

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Fri May 3 18:48:31 2002 ***

5 *** for: CPU Scheduler - No Pri ***

6 *** Rel: PDQ Analyzer v2.6 032202 ***

7 ***************************************

8 ***************************************

9

10 ***************************************

11 ****** PDQ Model INPUTS *******

12 ***************************************

254 6 Pretty Damn Quick (PDQ)—A Slow Introduction

13 Node Sched Resource Workload Class Demand

14 ---- ----- -------- -------- ----- ------

15 CEN FCFS CPU Production TERML 0.3000

16 CEN FCFS DK1 Production TERML 0.0800

17 CEN FCFS DK2 Production TERML 0.1000

18 CEN FCFS CPU Developmnt TERML 1.0000

19 CEN FCFS DK1 Developmnt TERML 0.0500

20 CEN FCFS DK2 Developmnt TERML 0.0600

21

22 Queueing Circuit Totals:

23

24 Generators: 35.00

25 Streams : 2

26 Nodes : 3

27

28 WORKLOAD Parameters

29

30 Gens Number Demand Thinktime

31 ---- ------ ------ ---------

32 Production 20.00 0.4800 20.00

33 Developmnt 15.00 1.1100 15.00

34

35 ***************************************

36 ****** PDQ Model OUTPUTS *******

37 ***************************************

38

39 Solution Method: APPROX (Iterations: 15; Accuracy: 0.1000%)

40

41 ****** SYSTEM Performance *******

42

43 Metric Value Unit

44 ----------------- ----- ----

45 Workload: "Production"

46 Mean Throughput 0.8813 Job/Sec

47 Response Time 2.6944 Sec

48 Mean Concurrency 2.3745 Job

49 Stretch Factor 5.6134

50 Bounds Analysis:

51 Max Throughput 3.3333 Job/Sec

52 Min Response 0.4800 Sec

53

54 Workload: "Developmnt"

55 Mean Throughput 0.6468 Job/Sec

56 Response Time 8.1914 Sec

57 Mean Concurrency 5.2981 Job

58 Stretch Factor 7.3796

59 Bounds Analysis:

60 Max Throughput 1.0000 Job/Sec

61 Min Response 1.1100 Sec

6.7 Classic Queues in PDQ 255

62

63 ****** RESOURCE Performance *******

64

65 Metric Resource Work Value Unit

66 --------- ------ ---- ----- ----

67 Throughput CPU Production 0.8813 Job/Sec

68 Utilization CPU Production 26.4382 Percent

69 Queue Length CPU Production 2.1958 Job

70 Residence Time CPU Production 2.4916 Sec

71

72 Throughput DK1 Production 0.8813 Job/Sec

73 Utilization DK1 Production 7.0502 Percent

74 Queue Length DK1 Production 0.0783 Job

75 Residence Time DK1 Production 0.0888 Sec

76

77 Throughput DK2 Production 0.8813 Job/Sec

78 Utilization DK2 Production 8.8127 Percent

79 Queue Length DK2 Production 0.1004 Job

80 Residence Time DK2 Production 0.1140 Sec

81

82 Throughput CPU Developmnt 0.6468 Job/Sec

83 Utilization CPU Developmnt 64.6792 Percent

84 Queue Length CPU Developmnt 5.2179 Job

85 Residence Time CPU Developmnt 8.0673 Sec

86

87 Throughput DK1 Developmnt 0.6468 Job/Sec

88 Utilization DK1 Developmnt 3.2340 Percent

89 Queue Length DK1 Developmnt 0.0360 Job

90 Residence Time DK1 Developmnt 0.0556 Sec

91

92 Throughput DK2 Developmnt 0.6468 Job/Sec

93 Utilization DK2 Developmnt 3.8808 Percent

94 Queue Length DK2 Developmnt 0.0443 Job

95 Residence Time DK2 Developmnt 0.0685 Sec

The response times of interest are on lines 47 and 56, respectively, of the PDQ
report. The next PDQ report is for the case where the Production workload
is given explicit priority over Development.

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Fri May 3 18:49:41 2002 ***

5 *** for: CPU Scheduler - Pri On ***

6 *** Rel: PDQ Analyzer v2.6 032202 ***

7 ***************************************

8 ***************************************

256 6 Pretty Damn Quick (PDQ)—A Slow Introduction

9

10 ***************************************

11 ****** PDQ Model INPUTS *******

12 ***************************************

13

14 Node Sched Resource Workload Class Demand

15 ---- ----- -------- -------- ----- ------

16 CEN FCFS CPU Production TERML 0.3000

17 CEN FCFS shadCPU Production TERML 0.0000

18 CEN FCFS DK1 Production TERML 0.0800

19 CEN FCFS DK2 Production TERML 0.1000

20

21 CEN FCFS CPU Developmnt TERML 0.0000

22 CEN FCFS shadCPU Developmnt TERML 1.4106

23 CEN FCFS DK1 Developmnt TERML 0.0500

24 CEN FCFS DK2 Developmnt TERML 0.0600

25

26 Queueing Circuit Totals:

27

28 Generators: 35.00

29 Streams : 2

30 Nodes : 4

31

32 WORKLOAD Parameters

33

34 Gens Number Demand Thinktime

35 ---- ------ ------ ---------

36 Production 20.00 0.4800 20.00

37 Developmnt 15.00 1.5206 15.00

38

39 ***************************************

40 ****** PDQ Model OUTPUTS *******

41 ***************************************

42

43 Solution Method: APPROX (Iterations: 13; Accuracy: 0.1000%)

44

45 ****** SYSTEM Performance *******

46

47 Metric Value Unit

48 ----------------- ----- ----

49 Workload: "Production"

50 Mean Throughput 0.9700 Job/Sec

51 Response Time 0.6190 Sec

52 Mean Concurrency 0.6004 Job

53 Stretch Factor 1.2896

54 Bounds Analysis:

55 Max Throughput 3.3333 Job/Sec

56 Min Response 0.4800 Sec

57

6.7 Classic Queues in PDQ 257

58 Workload: "Developmnt"

59 Mean Throughput 0.6340 Job/Sec

60 Response Time 8.6611 Sec

61 Mean Concurrency 5.4907 Job

62 Stretch Factor 5.6957

63 Bounds Analysis:

64 Max Throughput 0.7089 Job/Sec

65 Min Response 1.5206 Sec

66

67 ****** RESOURCE Performance *******

68

69 Metric Resource Work Value Unit

70 --------- ------ ---- ----- ----

71 Throughput CPU Production 0.9700 Job/Sec

72 Utilization CPU Production 29.0993 Percent

73 Queue Length CPU Production 0.4022 Job

74 Residence Time CPU Production 0.4146 Sec

75

76 Throughput DK1 Production 0.9700 Job/Sec

77 Utilization DK1 Production 7.7598 Percent

78 Queue Length DK1 Production 0.0867 Job

79 Residence Time DK1 Production 0.0894 Sec

80

81 Throughput DK2 Production 0.9700 Job/Sec

82 Utilization DK2 Production 9.6998 Percent

83 Queue Length DK2 Production 0.1115 Job

84 Residence Time DK2 Production 0.1150 Sec

85

86 Throughput shadCPU Developmnt 0.6340 Job/Sec

87 Utilization shadCPU Developmnt 89.4276 Percent

88 Queue Length shadCPU Developmnt 5.4114 Job

89 Residence Time shadCPU Developmnt 8.5360 Sec

90

91 Throughput DK1 Developmnt 0.6340 Job/Sec

92 Utilization DK1 Developmnt 3.1698 Percent

93 Queue Length DK1 Developmnt 0.0355 Job

94 Residence Time DK1 Developmnt 0.0560 Sec

95

96 Throughput DK2 Developmnt 0.6340 Job/Sec

97 Utilization DK2 Developmnt 3.8037 Percent

98 Queue Length DK2 Developmnt 0.0438 Job

99 Residence Time DK2 Developmnt 0.0691 Sec

The relevant response times appear on lines 51 and 60, respectively, of the
PDQ report. As summarized in Table 3.6, the response times confirm that
Production can be given higher priority to meet subsecond SLA requirements
while impacting Development in only a minimal way.

The Stretch Factor reported on lines 53 and 62 (above) is the ratio of
the system response time under load to the system response time when it

258 6 Pretty Damn Quick (PDQ)—A Slow Introduction

is uncontended (i.e., no queueing). For a single queue, the stretch factor is
simply the ratio of the residence time R to the service time S.

6.7.11 Load-Dependent Servers in PDQ

We present the detailed code for PDQ models with load-dependent servers,
such as the threads model of Sect. 3.9.4. The example presented here is for
the memory-constrained time-share system presented in Lazowska et al. [1984,
Sect. 9.3]. We consider that model in order to check the correctness of our PDQ
representation.

Consider the closed queueing circuit shown in Fig. 6.3. It contains a waiting
line connected to a server with an arrow through it. In Chap. 3 we learned
that such a server has a service rate that is dependent on the length of the
waiting line. In the case of Fig. 6.3, the load dependency is associated with

Users
N, Z

M < N

Disks
CPU

FESC

Fig. 6.3. Flow-equivalent service center model of a memory-constrained computer
system

the finite number of requests that can be serviced by the memory subsystem
bounded by the dotted line in the diagram.

There are N users making requests to the time-share computer, but only
a maximum number (M < N) are permitted to access the finite size memory
resource. When the maximum occupancy M is reached in the memory sub-
system, all other user requests must remain waiting outside the region marked

6.7 Classic Queues in PDQ 259

by the dotted line until that resource is freed by the departure of a serviced
request. The waiting requests enqueue at the waiting line attached to the
load-dependent server with the arrow in Fig. 6.3. Since that queue does not
conform to the BCMP rules in Sect. 3.8.2, this queueing circuit is not formally
separable, and therefore cannot be solved using PDQ in the usual way. How
are we to approach the problem of a queueing circuit that does not fulfill the
conditions for separability?

The solution is quite easy to understand if we approach it from a pro-
gramming standpoint. The memory-limited subsystem (in the exploded view)
is represented and solved as a separate Perl subroutine in PDQ. We think
of all of the queueing centers in the subcircuit as acting like a single server
for those requests waiting outside the subcircuit. It is as though we literally
short out the subcircuit that will act as the server, solve it separately, then
reconnect it and solve the composite system with the load-dependent server.
This is the queueing circuit equivalent of Norton’s theorem for passive elec-
trical circuits [Jain 1990, Chap. 36], and is known in queueing theory as the
Chandy–Herzog–Woo theorem. This is another reason we have adopted the
term queueing circuit rather than the more conventional queueing network.

#!/usr/bin/perl

fesc.pl

use pdq;

Model parameters

$USERS = 15;

$pq[0][0] = 1.0;

$max_pgm = 3;

$think = 60.0;

Composite (FESC) Model

$pq = []; # joint probability dsn.

$sm_x = []; # throughput characteristic of memory submodel

mem_model($USERS, $max_pgm); # Call the submodel first

for ($n = 1; $n <= $USERS; $n++) {

$R = 0.0; # reset

Response time at the FESC

for ($j = 1; $j <= $n; $j++) {

$R += ($j / ($sm_x[$j]) *

$pq[$j - 1][$n - 1]);

}

Thruput and queue-length at the FESC

$xn = $n / ($think + $R);

$qlength = $xn * $R;

Compute queue-length distribution at the FESC

260 6 Pretty Damn Quick (PDQ)—A Slow Introduction

for ($j = 1; $j <= $n; $j++) {

$pq[$j][$n] = ($xn / $sm_x[$j]) *

$pq[$j - 1][$n - 1];

}

$pq[0][$n] = 1.0;

for ($j = 1; $j <= $n; $j++) {

$pq[0][$n] -= $pq[$j][$n];

}

}

Memory-limited Submodel

sub mem_model

{

my ($n, $m) = @_;

$x = 0.0;

for ($i = 1; $i <= $n; $i++) {

if ($i <= $m) {

pdq::Init("");

$pdq::nodes = pdq::CreateNode("CPU",

$pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("DK1",

$pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("DK2",

$pdq::CEN, $pdq::FCFS);

$pdq::streams = pdq::CreateClosed("work",

$pdq::BATCH, $i);

pdq::SetDemand("CPU", "work", 3.0);

pdq::SetDemand("DK1", "work", 4.0);

pdq::SetDemand("DK2", "work", 2.0);

pdq::Solve($pdq::EXACT);

$x = pdq::GetThruput($pdq::TERM, "work");

$sm_x[$i] = $x; # use current value

} else {

$sm_x[$i] = $x; # use last computed value

}

}

} # end of mem_model

Report selected FESC metrics

printf("\n");

printf("Max Tasks: %2d\n", $USERS);

printf("X at FESC: %3.4f\n", $xn);

printf("R at FESC: %3.2f\n", $R);

printf("Q at FESC: %3.2f\n\n", $qlength);

Joint Probability Distribution

6.7 Classic Queues in PDQ 261

printf("QLength\t\tP(j | n)\n");

printf("-------\t\t--------\n");

for ($n = 0; $n <= $USERS; $n++) {

printf(" %2d\t\tp(%2d|%2d): %3.4f\n",

$n, $n, $USERS, $pq[$n][$USERS]);

}

The throughput characteristic of the isolated subcircuit is solved as a subrou-
tine (called sub mem model) for each of the n ≤ M permitted customers. This
memory-limited subcircuit throughput characteristic, shown schematically in
Fig. 6.4, is then used as the n-dependent service rate in the high-level model.
Since the service rate now depends on the number of permitted customers

Unconstrained throughput

Users (N)

T
hr

ou
gh

pu
t (

X
)

M = N

Constrained throughput

Fig. 6.4. FESC throughput characteristic for the memory-constrained time-share
system

n ≤ M in the memory-limited subcircuit, it is as though we have replaced the
complex server circuit with a single load-dependent server in Fig. 3.26. More-
over, since we calculate the load-dependent server throughput characteristic
explicitly, it is known as a flow-equivalent service center or FESC, denoted by
the arrow through the server in the composite model.

Example 6.1. Consider a multitasking PC with one CPU, two disks and
512 MB of RAM. An average 100 MB task requires 3 CPU-seconds, 4 ms
of service at one disk and 2 ms at the other. The operating system requires
150 MB, so that at most 3 tasks can be resident simultaneously in memory.
There are a maximum number of 15 task threads available, and the think-time
between task initiation is 60 ms. Running the program fesc.pl with these
parameters produces the following results:

262 6 Pretty Damn Quick (PDQ)—A Slow Introduction

Max Tasks: 15

X at FESC: 0.1750

R at FESC: 25.70

Q at FESC: 4.50

The average queue at the FESC contains 4.5 tasks. ��
At a slightly more detailed level, we need to concern ourselves with the queue
length distribution associated with the waiting line outside the subcircuit.
Unlike most of the other PDQ models we have considered so far, calculating
the mean queue length is simply no longer sufficient. This is the price we
must pay to solve what is otherwise a nonseparable queueing circuit. So, to
accurately model the queueing subcircuit with a FESC, we need to know the
queue length with n ≤ N customers in the composite system.

The PDQ model fesc.pl also reports the queue length at the FESC and
the corresponding joint probability distribution as:

QLength P(j | n)

------- --------

0 p(0|15): 0.0381

1 p(1|15): 0.0857

2 p(2|15): 0.1222

3 p(3|15): 0.1372

4 p(4|15): 0.1422

5 p(5|15): 0.1350

6 p(6|15): 0.1166

7 p(7|15): 0.0907

8 p(8|15): 0.0626

9 p(9|15): 0.0379

10 p(10|15): 0.0196

11 p(11|15): 0.0085

12 p(12|15): 0.0029

13 p(13|15): 0.0008

14 p(14|15): 0.0001

15 p(15|15): 0.0000

which is in precise agreement with Table 9.6 of Lazowska et al. [1984, Sect.
9.3]. It tells us that 3.81% of the time the memory submodel is idle, 8.57%
of the time there is a single active task, and 12.22% of the time there are
two active tasks. The remainder of the time (75.40%) there are three or more
tasks ready. Consequently, there are:

(0.0381× 1) + (0.0857× 2) + (0.7540× 3) = 2.592 (6.2)

active tasks, on average, in the memory submodel.

Example 6.2. Using these results, we can determine the memory access time.
We have that X = 0.1750 from fesc.pl and Nmem = 2.592 from (6.2).
Writing Little’s law (2.14) as Nmem = XRmem, we find the time spent in the
memory sub-model is:

6.7 Classic Queues in PDQ 263

Rmem =
2.592
0.1750

= 14.81 ms .

Since we have already calculated the task response time as 25.70 ms at
the high-level composite model, we conclude that a tasks must wait for
25.70− 14.81 = 10.89 ms to access memory. ��
The reader should be aware that a FESC is not the only algorithm to accom-
modate the constraint of a finite size queue or buffer. Another approach is
to construct a hybrid model where the finite states are computed using the
appropriate Markov chain [Trivedi 2000, Ajmone-Marsan et al. 1990]. This
approach works best when the number of buffer states is relatively small.

Having demonstrated the basic concept of load-dependent servers in PDQ,
we shall apply it to PDQ models of multicomputer performance in Chap. 7
and Web application performance in Chap. 10.

6.7.12 Bounds Analysis with PDQ

This is the Perl code for the bounds analysis presented in Chap. 5.

#!/usr/bin/perl

florida.pl

use pdq;

$STEP = 100;

$MAXUSERS = 3000;

$think = 10; #seconds

$srvt1 = 0.0050; #seconds

$srvt2 = 0.0035; #seconds

$srvt3 = 0.0020; #seconds

$Dmax = $srvt1;

$Rmin = $srvt1 + $srvt2 + $srvt3;

print the header ...

printf("%5s\t%6s\t%6s\t%6s\t%5s\t%6s\t%6s\t%6s\n",

" N ", " X ", " Xlin ", " Xmax ",

" N ", " R ", " Rmin ", " Rinf ");

iterate up to $MAXUSERS ...

for ($users = 1; $users <= $MAXUSERS; $users++) {

pdq::Init("Florida Model");

$pdq::streams = pdq::CreateClosed("benchload",

$pdq::TERM, $users, $think);

$pdq::nodes = pdq::CreateNode("Node1", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("Node2", $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode("Node3", $pdq::CEN, $pdq::FCFS);

pdq::SetDemand("Node1", "benchload", $srvt1);

pdq::SetDemand("Node2", "benchload", $srvt2);

pdq::SetDemand("Node3", "benchload", $srvt3);

264 6 Pretty Damn Quick (PDQ)—A Slow Introduction

pdq::Solve($pdq::APPROX);

if (($users == 1) or ($users % $STEP == 0)) {

print as TAB separated columns ...

printf("%5d\t%6.2f\t%6.2f\t%6.2f\t%5d\t%6.2f\t%6.2f\t%6.2f\n",

$users,

pdq::GetThruput($pdq::TERM, "benchload"),

$users / ($Rmin + $think),

1 / $Dmax,

$users,

pdq::GetResponse($pdq::TERM, "benchload"),

$Rmin,

($users * $Dmax) - $think

);

}

}

6.8 Review

All the performance models discussed in this book are constructed using the
Perl PDQ module described in this chapter. The open-source PDQ software
can be downloaded from www.perfdynamics.com. The mathematical back-
ground for this chapter is presented in Chaps. 2 and 3.

Exercises

6.1. Build and solve an M/M/1 model in PDQ using the following parameters:

Parameter Value
$MeasurePeriod 7200 s
$ArrivalCount 3450
$ServiceVisits 12.25
$ServiceTime 0.010 s

6.2. Build and solve a PDQ model for a computer system comprising a CPU
and two disks running three workload streams, two online and one batch, with
the following parameters:

6.8 Review 265

Stream N Z Node Demand
OnlineA 5 20 CPU 0.50 s
OnlineA 5 20 DK1 0.04 s
OnlineA 5 20 DK2 0.06 s
OnlineB 10 30 CPU 0.40 s
OnlineB 10 30 DK1 0.20 s
OnlineB 10 30 DK2 0.30 s
Batch 5 0 CPU 1.20 s
Batch 5 0 DK1 0.05 s
Batch 5 0 DK2 0.06 s

7

Multicomputer Analysis with PDQ

7.1 Introduction

In this chapter we turn to the subclass of multicomputer architectures known
as symmetric multiprocessors (SMP). Because of their intrinsic economy, ex-
pandability, performance, and reliability, SMPs have found their way into a
wide range of applications. In particular, commercial applications, and that is
the focus of this chapter. Distinct from scientific requirements, the emphasis
in the commercial arena is on high levels of coarse-grain concurrency rather
than fine-grain parallelism.

In terms of queueing circuit models, we shall see how the time-share model
of N users queueing to access a CPU or a central computing resource (the
closed queueing circuit in Sect. 3.9.1 of Chap. 3 can be “inverted” to construct
a model of a multiprocessor computer. The notion is a simple one: the N users
become N processors, and the queueing center represents a shared-memory
bus rather than a CPU. The think-time then, becomes the mean execution
time between memory requests across the bus. The same SMP queueing-circuit
paradigm can be used to assess the performance of clusters of SMPs [Buyya
1999], and distributed-memory SMPs, such as non-uniform memory architec-
tures (NUMA) [Westall and Geist 1997].

In this chapter you will see how to apply PDQ to the performance analysis
of symmetric multiprocessors (SMPs) and distributed multicomputer clusters.
For SMPs, caching effects and cache protocols can be a significant determinant
for performance and scalability. This is particularly true for workloads that
involve shared writeable data, e.g., online transaction processing databases.

Later in this chapter, you will learn that for read-intensive workloads,
e.g., data mining or decision support, multicomputer clusters offer better re-
sponse time performance than SMPs. Since the data is not being updated,
previously read data can be cached and queries can be processed in parallel
across a striped database. The optimal back-end parallel configuration can be
determine by examining the saturation throughput for each configuration.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_7, © Springer-Verlag Berlin Heidelberg 2005

268 7 Multicomputer Analysis with PDQ

7.2 Multiprocessor Architectures

We saw in Chap. 2 that under the same conditions the fastest available unipro-
cessor offered the highest performance. Unfortunately, the fastest available
uniprocessor is also likely to use the most expensive technology, e.g., bipolar
logic. There may also be other technical limitations to the fastest technology
such as packaging and cooling.

(b)

(g) (i)

(e)

(c)
(a)

(d)
(f)

(h)

Fig. 7.1. Schematic representation of some commonly used multicomputer inter-
connect topologies: (a) linear bus, (b) crossbar, (c) ring, (d) hierarchical ring, (e)
binary tree, (f) fat tree, (g) mesh, (h) 2-dimensional torus, (i) 4-dimensional hyper-
cube. Computing nodes are depicted as squares

There is clearly an economy of scale that attends when multiple, relatively
cheap, processors can be directed at a workload rather than being limited
to a single processor. The real problem is how to combine these multiple
processors into a useful computing machine. At the hardware level there is a
large variety of topologies (Fig. 7.1) available to provide an interconnection
between processors and storage [Gunther 2000a, Chap. 5].

At the software level, one of the most effective solutions is supported by
having the multiple processors share a common global memory. This leads to
the multiple instruction multiple data (MIMD) subclass of multicomputers
in Fig. 7.2. The run-time environment can be made to look the same as it
would on a uniprocessor, and neither the programmer nor the application

7.2 Multiprocessor Architectures 269

SIMD MIMD

SMPs NUMA MPPs Clusters

Shared
Memory

Uniprocessors Multiprocessors

Distributed
Memory

Computers

Fig. 7.2. A taxonomy of multicomputer architectures

need be aware of which CPU the program will run on at any time. The is the
meaning of “symmetric” in SMP. Standard programming paradigms remain
largely intact so that applications require only minimal modification to run
on an SMP.

7.2.1 Symmetric Multiprocessors

The classic SMP has a single shared-memory bus like that depicted in
Fig. 7.3(a). Typical commercial SMP architectures now have multiple memory
buses like that depicted in Fig. 7.3(b) that can enhance memory throughput.
They can also be combined with multiple operating system images to achieve
a cost-effective form of high availability.

Simply adding more processors to the memory bus consumes bus band-
width dramatically. Also processor speeds are usually much higher than mem-
ory and bus speeds (see Table 1.1). These problem can be alleviated via the
use of memory subsystems that are more local to the processor. These mem-
ories are called caches. The proximity of the cache to the CPU is sometimes
called its level, e.g., a level-one (L1) cache is closest to the CPU and is often
included on the microprocessor chip. A level-two (L2) cache sits between the
L1 cache and the bus. It has been demonstrated that higher levels of caching
do not significantly improve the price–performance metric.

Processor caches may store data and instructions separately or together,
the latter often being referred to as a unified cache. The presence of caches
leads to a number of architectural performance determinants. The local mem-
ories improve access times if the necessary data (or instructions) are present.
The relative speed of the processor, the cache size, and the locality of mem-
ory references in the code all conspire to determine overall performance. If

270 7 Multicomputer Analysis with PDQ

 Shared Memory
 Bus

 CPUs
 ...L2 L2 L2

Global
RAM I/O Bus

(a) Single memory
bus interconnect

I/O
Buses

L2 L2

Global
RAMGlobal

RAMGlobal
RAMBanked

RAM

 CPUs
 ...

(b) Multiple memory bus inter-
connect

Fig. 7.3. Typical SMP memory bus architectures. (a) A single shared-memory bus
with second-level cache memories and a separate I/O subsystem. (b) Banked or
interleaved memory busses

the cache is too small or the reference locality is poor, then the number of
references that must be passed to main memory will be high and little will
be achieved with respect to reducing bus utilization. In a multiprocessor sys-
tem, since each CPU has its own cache or caches, any references that have
been copied to caches must be kept consistent with each other and with main
memory. This house keeping activity must also be kept efficient if bus loading
is to be kept at a minimum. The degree to which memory references are not
available in the cache is called the miss rate [Flynn 1995, Appendix A] or miss
ratio.

7.2.2 Multiprocessor Caches

A cache can be thought of as comprising a number of rows or lines (also
known as blocks). Cache lines need to be replaced from time to time due to
the presence of stale data that needs to be made consistent with other cached
copies or because new lines need to be brought into the cache and other lines
must be removed to make way for them. These cache lines or rows can also be
broken into smaller segments (like columns in a spreadsheet). The former is
called a direct-mapped cache, while the latter is called a set-associative cache.
The number of columns in the cache is called the degree of set associativity.

When references are made to main memory, a request has to be generated
by the cache (e.g., the L2 cache) and placed on the bus. The memory bus can
be either circuit-switched or packet-switched. In a circuit-switched bus, the
bus is usually held during the time of the request being sent to and processed

7.2 Multiprocessor Architectures 271

by main memory, and also during the time when the requested data is being
returned from main memory. During this bus-holding period, no other requests
can be placed on the bus. This approach keeps the implementation rather
simple but, it severely limits the ability to place more than a few processors
on the bus.

An alternative is the packet-switched bus protocol, also known as a split-
cycle bus or transaction bus. There, requests are placed on the bus asyn-
chronously and the data is returned to the requestor when it becomes avail-
able. In the meantime, the cache can continue servicing processor (or other
cache) requests. Most large-scale SMP servers employ some variant of a
split-cycle in order to assist scalability. unix SMP scalability is discussed
in Gunther [2000a, Chap. 6 and 14] and Windows 2000 scalability is discussed
in Friedman and Pentakalos [2002, p. 225].

The way data is kept consistent across caches also requires an intricate
protocol in order to achieve SMP scalability. A write-through protocol is one
where updates are immediately transmitted to main memory at the time
they are written to the cache. This keeps main memory as the holder of the
most current state, but it creates a lot of write traffic on the bus. A more
efficient scheme is called write-back or copy-back. There, only the local copy
is updated, with the change reflected in main memory only when the line is
removed from the cache. We construct a PDQ performance model for each of
these cache protocols in Sect. 7.3.4. Local caches are kept consistent with each
other by listening to requests on the bus and taking appropriate action. This
monitoring of the bus is called a snooping protocol [Flynn 1995, Appendix F].

The performance characteristics of a cache memory have a lot in com-
mon with virtual memory. In particular, locality of references is determined
by compiler optimizations (i.e., the number of instructions per computational
task). It has also been shown that successive memory references can exhibit
a long-term fractal -like behavior. Other important performance determinants
include control algorithms such as preemption control and processor affin-
ity [Gunther 2000a, Appendix C].

7.2.3 Cache Bashing

Caches can be defeated quite simply by poor programming practice. Consider
a linked list with a large number of entries. Traversing the links in the list to
find a certain datum requires relatively few instructions. These few instruc-
tions are repeated until the datum is found. The instructions will therefore
remain resident in the cache so it serves its intended purpose for instruction
accesses. The picture is different for data caching, however. For each link the
corresponding datum must be read. But these data will not be in the same
cache line, so a read miss will occur and there will be a high (relative to the
processor) latency to obtain a replacement cache line from main memory. The

272 7 Multicomputer Analysis with PDQ

way out is to change the search algorithm from a linear search to a hashed or
tree-type search.

Another problem for direct-mapped caches occurs when copying arrays
that are separated by a multiple of the cache size. The source and destination
addresses become resident in the same cache line. These examples apply to
either uniprocessor or multiprocessor codes. Specifically for SMPs is the prob-
lem of ping-pong synchronization locks between processor caches [Gunther
1996]. If a processor modifies a memory location via an atomic test-and-set
operation, the lock will end up resident exclusively in that processor’s cache
(whether the lock is free or not). Another processor performing the same test-
and-set operation will then cause the lock to be moved to its cache. Since the
test-and-set operation must be applied until the lock is acquired, the lock can
“bounce” between the waiting processors. More processors contending for the
same lock degrades performance further. One solution to this problem is to
test the lock state before applying the test-and-set operation. This is know as
test-and-test-and-set operation.

A similar effect can occur when adjacent words in a cache line are modified
by different processors. The first occurrence of a write moves the line to that
processor’s cache, while the next write is issued by another processor, which
moves the line to that processor’s cache. We can identify three basic rules of
thumb:

• Perform all operations on the same datum in the same CPU to avoid
interprocessor communication.

• Align data to prevent words that are frequently accessed by different pro-
cessors being adjacent.

• Localize the use of data and avoid sweeping through all data items.

There is also the broader issue of symmetrization (the ‘S’ in SMP). Symmetriz-
ing application code to run efficiently on SMPs is a more difficult problem.
A set of performance guidelines for symmetrizing applications can be found
in Gunther [2000a, Appendix C]. Next, we consider some methods for esti-
mating the performance of these multiprocessor architectures.

7.3 Multiprocessor Models

The simplest performance model might be constructed using an M/M/m
queueing center discussed in Chap. 2 and shown in Fig. 7.4. In this case, the
servers represent the processors, and the waiting line represents the run-queue
feeding the CPUs. While this simple approach might be of value in some cases,
it suffers several drawbacks:

• This is an open-circuit queueing center. As we saw in Chap. 2, if the
circulating population of requests is not more than an order of magnitude
greater than the queue length, an open-circuit model may not be a very
accurate representation.

7.3 Multiprocessor Models 273

Fig. 7.4. A simple M/M/m representation of an SMP

• It may not be an accurate way to assess the impact of multiple users on
the SMP system.

• The throughput is unbounded and proportional to server load ρ.
• There must be an asymptote where the throughput saturates.
• The model does not include memory or I/O contention.

These limitations notwithstanding, Figure 7.4 may still be useful elementary
tool for setting initial SMP performance expectations.

7.3.1 Single-Bus Models

We can incorporate the effects of multiple users and the effects of bus sat-
uration by applying the repairman model (discussed in Chaps. 2 and 3) to
construct a closed-circuit queueing model (Fig. 7.5) of an SMP [Ajmone-
Marsan et al. 1990]). The mapping between the repairman model and the

CPUs

Shared
memory bus

Fig. 7.5. Repairman model of a single shared-memory bus SMP

SMP multiprocessor is summarized in Table 7.1. The SMP model in Fig. 7.5
is pessimistic in that:

• memory service is exponentially distributed rather than deterministic
• memory requests are not returned in order

A hybrid model [Tsuei and Vernon 1992] is needed to include such effects. On
the other hand, Fig. 7.5 is optimistic in that:

274 7 Multicomputer Analysis with PDQ

Table 7.1. Mapping between Repairman and SMP models

Repairman model Multiprocessor model

N user terminals p processors (N/p users per CPU)
Central CPU Single shared-memory bus
Programs Bus requests
Think time Compute time
Response time Execution time
System throughput Bus bandwidth

• no disk I/O
• no cache intervenes
• no retries
• no software locking

Again, a hybrid model can be used to address these aspects.

7.3.2 Processing Power

A common metric used to assess SMP performance is the processing power
[Ajmone-Marsan et al. 1990]. The mean processing power P is defined as the
average number of actively computing processors (Fig. 7.6). This metric is
useful because other performance measures can be derived from it, as we now
demonstrate.

The mean number of active processors is the total number of physical
processors reduced by the number that have outstanding requests on the bus:

P = p − Q . (7.1)

Applying the Response Time Law given by (2.90) from Chap 2, the average
bus delay for a request is:

R =
p

X
− Z . (7.2)

Substituting this expression for R into Little’s law given by (2.14) produces:

Q = XR = p − XZ , (7.3)

from which we obtain a more transparent definition of processing power, viz:.

P = XZ . (7.4)

In other words, P can also be interpreted as the total processor utiliza-
tion, where the processors are treated as an infinite server (IS) node (cf.
Sect. 2.11.1). Rewriting the bus delay (7.2) as:

R =
p

X
− ZX

X
, (7.5)

7.3 Multiprocessor Models 275

1

6

11

16

21

26

31

1 2 3 4 5 6 7 8

0.00

5.00

10.00

15.00

20.00

25.00

30.00

P
ro

ce
ss

in
g

po
w

er

CPUs

Buses

Fig. 7.6. Processing power for a 32-way SMP with up to 8 busses

and noting that X = P/Z, by rearrangment of (7.4) we have:

R =
(

p − P

P

)
Z (7.6)

after the appropriate substitution.
By defining Ω = S/Z, the mean waiting time (W = R − S) for a bus

request is determined to be:

W =
(

p − (1 + Ω)P
P

)
Z , (7.7)

and the mean memory-bus cycle time Tbus = R + Z is:

Tbus =
(

p

P

)
Z . (7.8)

From these definitions, it is possible to construct other SMP performance
indices. See Exercise 7.1.

276 7 Multicomputer Analysis with PDQ

7.3.3 Multiple-Bus Models

The effect of adding more buses and memories can be determined by replacing
the uniserver bus center with a multiserver center like that shown in Fig. 7.7.
This M/M/b/p/p model gives an upper bound from bus contention only.
Similarly, a b(M/M/1) model will give a lower bound because of memory
contention only.

CPUs

Multiple
memory
buses

Fig. 7.7. Repairmen model for an SMP with multiple shared-memory buses

The following PDQ model uses a load-dependent server (See Chaps. 3
and 6) to compute the effects of multiple buses:

#! /usr/bin/perl

multibus.pl

use pdq;

System parameters

$BUSES = 9;

$CPUS = 64;

$STIME = 1.0;

$COMPT = 10.0;

printf("multibus.out\n");

Compute the submodel first

multiserver($BUSES, $STIME);

Now, compute the composite model

$pq[0][0] = 1.0;

for ($n = 1; $n <= $CPUS; $n++) {

$R = 0.0; # reset

for ($j = 1; $j <= $n; $j++) {

7.3 Multiprocessor Models 277

$h = ($j / $sm_x[$j]) * $pq[$j - 1][$n - 1];

$R += $h;

}

$xn = $n / ($COMPT + $R);

$qlength = $xn * $R;

for ($j = 1; $j <= $n; $j++) {

$pq[$j][$n] = ($xn / $sm_x[$j]) * $pq[$j - 1][$n - 1];

}

$pq[0][$n] = 1.0;

for ($j = 1; $j <= $n; $j++) {

$pq[0][$n] -= $pq[$j][$n];

}

}

Processing Power

printf("Buses:%2d, CPUs:%2d\n", $BUSES, $CPUS);

printf("Load %3.4f\n", ($STIME / $COMPT));

printf("X at FESC: %3.4f\n", $xn);

printf("P %3.4f\n", $xn * $COMPT);

sub multiserver {

my ($m, $stime) = @_;

$work = "reqs";

$node = "bus";

$x = 0.0;

for ($i = 1; $i <= $CPUS; $i++) {

if ($i <= $m) {

pdq::Init("multibus");

$streams = pdq::CreateClosed($work, $pdq::TERM, $i, 0.0);

$nodes = pdq::CreateNode($node, $pdq::CEN, $pdq::ISRV);

pdq::SetDemand($node, $work, $stime);

pdq::Solve($pdq::EXACT);

$x = pdq::GetThruput($pdq::TERM, $work);

$sm_x[$i] = $x;

} else {

$sm_x[$i] = $x;

}

}

} # end of multiserver

Multibus scaling for a 64-way multiprocessor is shown in Fig 7.8. Notice
that the saturation throughput values are equally spaced along the y-axis.
The corresponding efficiency characteristics are shown in Fig. 7.9. For a fixed
number of CPUs, adding more buses beyond the third or fourth has little
impact on system throughput.

278 7 Multicomputer Analysis with PDQ

b = 1

b = 2

b = 3

b = 4

0

5

10

15

20

25

30

35

40

45

0 10 20 30 40 50 60 70

Processors (p)

P
ro

ce
ss

in
g

po
w

er
 (

P
)

Fig. 7.8. Scalability for a 64-way SMP with b buses at ρ = 0.1

b = 1

b = 2

b = 3

b = 4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 10 20 30 40 50 60 70

Processors (p)

E
ffi

ci
en

cy
 (

P
/p

)

Fig. 7.9. Efficiency curves for a 64-way SMP with b buses

More elaborate bus models that distinguish between the (possibly) different
service times for bus-reads and bus-writes can be developed using multiclass
workloads like that shown in Fig. 7.10.

7.3.4 Cache Protocols

As we mentioned earlier, processor caches are an important architectural con-
sideration for reducing shared bus contention. Their effectiveness is deter-
mined by many subtle factors (some of which we have already discussed), but

7.3 Multiprocessor Models 279

in this section we extend our previous SMP performance models to include
the effects of the cache update policy. The two policies we consider are:

1. Write-through: A cache write is simultaneously sent to main memory.
2. Write-back: Main memory is updated only when a cache line is replaced.

A detailed analysis using PDQ would take us too far afield. Instead, we con-

CPUs

Multiple
memory
buses

Fig. 7.10. PDQ bus model with multiclass workload

sider the simpler PDQ model in Fig 7.10 to give an idea of what can be
achieved with relatively little labor compared to that which might be required
for a simulation. The model depicts a single shared-memory bus with the p
CPUs supported by 0, . . . , p − 1 private second-level (L2) caches. The caches
are assumed to be unified, i.e., there is no distinction between the data and
instruction content. In the case of the write-through protocol there are three
PDQ workload classes:

• reads and writes that are hits in the L2 cache
• reads that are misses in the L2 cache that cause a memory read bus oper-

ation
• writes that are misses in the L2 cache that cause a write-through bus

operation

The write-back policy requires four PDQ workload classes:

• reads and writes that are hits in the L2 cache
• reads that are misses in the L2 cache that cause a memory read bus oper-

ation
• Writes that are misses in the L2 cache that cause a memory write bus

operation

280 7 Multicomputer Analysis with PDQ

Miss
Reference

BusRead

WriteThru

wunmod

wmodify

Invalidate

Miss

modified

unmodified

WriteBack

Hit

Hit

Write

Read

Fig. 7.11. SMP model bus operations

• an Invalidate bus operation

The references that lead to bus operations are shown in Figs. 7.11 and 7.12.

CPUs

Memory bus

Cache(0)

Cache(p)

Fig. 7.12. PDQ bus model including multiclass workloads and separate CPU caches

The remainder of the description of the model appears in the following
PDQ source code:

#! /usr/bin/perl

7.3 Multiprocessor Models 281

abcache.pl

use pdq;

Main memory update policy

The main-memory update policy is selected to be write-through here.

$WBACK = 1;

Globals

$MAXCPU = 15;

$ZX = 2.5;

Cache parameters

$RD = 0.85;

$WR = (1 - $RD);

$HT = 0.95;

$WUMD = 0.0526;

$MD = 0.35;

Bus and L2 cache ids

$L2C = "L2C";

$BUS = "MBus";

Aggregate cache traffic

$RWHT = "RWhit";

$gen = 1.0;

Bus Ops

$RDOP = "Read";

$WROP = "Write";

$INVL = "Inval";

per CPU intruction stream intensity

The following variables are used to assign the per CPU intruction stream

intensity for write-through.

$Prhit = ($RD * $HT);

$Pwhit = ($WR * $HT * (1 - $WUMD)) + ($WR * (1 - $HT) * (1 - $MD));

$Prdop = $RD * (1 - $HT);

$Pwbop = $WR * (1 - $HT) * $MD;

$Pwthr = $WR;

$Pinvl = $WR * $HT * $WUMD;

$Nrwht = 0.8075 * $MAXCPU;

$Nrdop = 0.0850 * $MAXCPU;

$Nwthr = 0.15 * $MAXCPU;

$Nwbop = 0.0003 * $MAXCPU * 100;

$Ninvl = 0.015 * $MAXCPU;

$Srdop = (20.0);

282 7 Multicomputer Analysis with PDQ

$Swthr = (25.0);

$Swbop = (20.0);

$Wrwht = 0.0;

$Wrdop = 0.0;

$Wwthr = 0.0;

$Wwbop = 0.0;

$Winvl = 0.0;

$Zrwht = $ZX;

$Zrdop = $ZX;

$Zwbop = $ZX;

$Zinvl = $ZX;

$Zwthr = $ZX;

$Xcpu = 0.0;

$Pcpu = 0.0;

$Ubrd = 0.0;

$Ubwr = 0.0;

$Ubin = 0.0;

$Ucht = 0.0;

$Ucrd = 0.0;

$Ucwr = 0.0;

$Ucin = 0.0;

pdq::Init("ABC Model");

More appopriate units are assigned for assessing bus performance.

pdq::SetWUnit("Reqs");

pdq::SetTUnit("Cycs");

Create single bus queueing center

$nodes = pdq::CreateNode($BUS, $pdq::CEN, $pdq::FCFS);

Create per CPU cache queueing centers

for ($i = 0; $i < $MAXCPU; $i++) {

$cname = sprintf "%s%d", $L2C, $i;

$nodes = pdq::CreateNode($cname, $pdq::CEN, $pdq::FCFS);

#printf "i %2d cname %10s nodes %d\n", $i, $cname, $nodes;

}

Create CPU nodes, workloads, and demands

In this PDQ model the proportion of each workload (read-write hits,

reads, writes, invalidates) is partitioned amongst the total number of

processors by a call to intwt(). In the event that the number of CPUs

belonging to a workload is less than one, the number of CPUs is taken to

be one with a weight factor assigned to its throughput and utilization.

7.3 Multiprocessor Models 283

printf " Nrwht %s, Zrwht %s\n", $Nrwht, $Zrwht;

$no = intwt($Nrwht, \$Wrwht);

printf "no %d %f Nrwht %d, Zrwht %d\n", $no, $no, $Nrwht, $Zrwht;

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $RWHT, $i;

#printf "wname %s Nrwht %d, Zrwht %d\n", $wname, $Nrwht, $Zrwht;

$streams = pdq::CreateClosed($wname, $pdq::TERM, $Nrwht, $Zrwht);

$cname = sprintf "%s%d", $L2C, $i;

#printf "cname %s\n", $cname;

pdq::SetDemand($cname, $wname, 1.0);

pdq::SetDemand($BUS, $wname, 0.0); # no bus activity

printf "i %2d cname %10s nodes %2d streams %d\n", $i, $cname,

$nodes, $streams;

}

$no = intwt($Nrdop, \$Wrdop);

printf "no %d Nrdop %d, Zrdop %d\n", $no, $Nrdop, $Zrdop;

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $RDOP, $i;

$streams = pdq::CreateClosed($wname, $pdq::TERM, $Nrdop, $Zrdop);

$cname = sprintf "%s%d", $L2C, $i;

pdq::SetDemand($cname, $wname, $gen); # generate bus request

pdq::SetDemand($BUS, $wname, $Srdop); # req + async data return

printf "i %2d cname %10s nodes %2d streams %d\n", $i, $cname,

$nodes, $streams;

}

if (WBACK) {

$no = intwt($Nwbop, \$Wwbop);

printf "no %d Nwbop %d, Zwbop %d\n", $no, $Nwbop, $Zwbop;

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $WROP, $i;

$streams = pdq::CreateClosed($wname, $pdq::TERM, $Nwbop, $Zwbop);

$cname = sprintf "%s%d", $L2C, $i;

pdq::SetDemand($cname, $wname, $gen);

pdq::SetDemand($BUS, $wname, $Swbop); # asych write to memory ?

printf "w %2d cname %10s nodes %2d streams %d\n", $i, $cname,

$nodes, $streams;

}

} else { # write-thru

$no = intwt($Nwthr, \$Wwthr);

printf "no %d Nwthr %d, Zwthr %d\n", $no, $Nwthr, $Zwthr;

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $WROP, $i;

$streams = pdq::CreateClosed($wname, $pdq::TERM, $Nwthr, $Zwthr);

$cname = sprintf "%s%d", $L2C, $i;

pdq::SetDemand($cname, $wname, $gen);

284 7 Multicomputer Analysis with PDQ

pdq::SetDemand($BUS, $wname, $Swthr);

printf "i %2d cname %10s nodes %2d streams %d\n", $i, $cname,

$nodes, $streams;

}

}

if (WBACK) {

$no = intwt($Ninvl, \$Winvl);

printf "no %d Ninvl %d, Zinvl %d\n", $no, $Ninvl, $Zinvl;

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $INVL, $i;

$streams = pdq::CreateClosed($wname, $pdq::TERM, $Ninvl, $Zinvl);

$cname = sprintf "%s%d", $L2C, $i;

pdq::SetDemand($cname, $wname, $gen); # gen + intervene

pdq::SetDemand($BUS, $wname, 1.0);

printf "w %2d cname %10s nodes %2d streams %d\n", $i, $cname,

$nodes, $streams;

}

}

pdq::Solve($pdq::APPROX);

Calculate bus utilizations

$no = intwt($Nrdop, \$Wrdop);

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $RDOP, $i;

$Ubrd += pdq::GetUtilization($BUS, $wname, $pdq::TERM);

}

$Ubrd *= $Wrdop;

if (WBACK) {

$no = intwt($Nwbop, \$Wwbop);

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $WROP, $i;

$Ubwr += pdq::GetUtilization($BUS, $wname, $pdq::TERM);

}

$Ubwr *= $Wwbop;

$no = intwt($Ninvl, \$Winvl);

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $INVL, $i;

$Ubin += pdq::GetUtilization($BUS, $wname, $pdq::TERM);

}

$Ubin *= $Winvl;

} else { # write-thru

$no = intwt($Nwthr, \$Wwthr);

for ($i = 0; $i < $no; $i++) {

$wname = sprintf "%s%d", $WROP, $i;

$Ubwr += pdq::GetUtilization($BUS, $wname, $pdq::TERM);

7.3 Multiprocessor Models 285

}

$Ubwr *= $Wwthr;

}

Cache measures at CPU[0] only

$i = 0;

$cname = sprintf "%s%d", $L2C, $i;

$wname = sprintf "%s%d", $RWHT, $i;

$Xcpu = pdq::GetThruput($pdq::TERM, $wname) * $Wrwht;

$Pcpu += $Xcpu * $Zrwht;

$Ucht = pdq::GetUtilization($cname, $wname, $pdq::TERM) * $Wrwht;

$wname = sprintf "%s%d", $RDOP, $i;

$Xcpu = pdq::GetThruput($pdq::TERM, $wname) * Wrdop;

$Pcpu += $Xcpu * $Zrdop;

$Ucrd = pdq::GetUtilization($cname, $wname, $pdq::TERM) * $Wrdop;

$Pcpu *= 1.88;

if ($WBACK) {

$wname = sprintf "%s%d", $WROP, $i;

$Ucwr = pdq::GetUtilization($cname, $wname, $pdq::TERM) * $Wwbop;

$wname = sprintf "%s%d", $INVL, $i;

$Ucin = pdq::GetUtilization($cname, $wname, $pdq::TERM) * $Winvl;

} else { # write-thru

$wname = sprintf "%s%d", $WROP, $i;

$Ucwr = pdq::GetUtilization($cname, $wname, $pdq::TERM) * $Wwthr;

}

printf "\n**** %s Results ****\n", $model;

printf "PDQ nodes: %d PDQ streams: %d\n", $nodes, $streams;

printf "Memory Mode: %s\n", $WBACK ? "WriteBack" : "WriteThru";

printf "Ncpu: %2d\n", $MAXCPU;

$no = intwt($Nrwht, \$Wrwht);

printf "Nrwht: %5.2f (N:%2d W:%5.2f)\n", $Nrwht, $no, $Wrwht;

$no = intwt($Nrdop, \$Wrdop);

printf "Nrdop: %5.2f (N:%2d W:%5.2f)\n", $Nrdop, $no, $Wrdop;

if (WBACK) {

$no = intwt($Nwbop, \$Wwbop);

printf "Nwbop: %5.2f (N:%2d W:%5.2f)\n", $Nwbop, $no, $Wwbop;

$no = intwt($Ninvl, \$Winvl);

printf "Ninvl: %5.2f (N:%2d W:%5.2f)\n", $Ninvl, $no, $Winvl;

} else {

$no = intwt($Nwthr, \$Wwthr);

printf "Nwthr: %5.2f (N:%2d W:%5.2f)\n", $Nwthr, $no, $Wwthr;

}

printf "\n";

286 7 Multicomputer Analysis with PDQ

printf "Hit Ratio: %5.2f %%\n", $HT * 100.0;

printf "Read Miss: %5.2f %%\n", $RD * (1 - $HT) * 100.0;

printf "WriteMiss: %5.2f %%\n", $WR * (1 - $HT) * 100.0;

printf "Ucpu: %5.2f %%\n", ($Pcpu * 100.0) / $MAXCPU;

printf "Pcpu: %5.2f\n", $Pcpu;

printf "\n";

printf "Ubus[reads]: %5.2f %%\n", $Ubrd * 100.0;

printf "Ubus[write]: %5.2f %%\n", $Ubwr * 100.0;

printf "Ubus[inval]: %5.2f %%\n", $Ubin * 100.0;

printf "Ubus[total]: %5.2f %%\n", ($Ubrd + $Ubwr + $Ubin) * 100.0;

printf "\n";

printf "Uca%d[hits]: %5.2f %%\n", $i, $Ucht * 100.0;

printf "Uca%d[reads]: %5.2f %%\n", $i, $Ucrd * 100.0;

printf "Uca%d[write]: %5.2f %%\n", $i, $Ucwr * 100.0;

printf "Uca%d[inval]: %5.2f %%\n", $i, $Ucin * 100.0;

printf "Uca%d[total]: %5.2f %%\n", $i, ($Ucht + $Ucrd + $Ucwr + $Ucin)

* 100.0;

sub itoa {

my ($n, $s) = @_;

if (($sign = $n) < 0) {

$n = -$n;

}

$i = 0;

do { # generate digits in reverse order

$s[$i++] = ’0’ + ($n % 10);

} while (($n /= 10) > 0);

if ($sign < 0) {

$s[$i++] = ’-’;

}

$s[$i] = ’\0’;

reverse order of bytes

for ($i = 0, $j = strlen($s) - 1; $i < $j; $i++, $j--) {

$c = $s[$i];

$s[$i] = $s[$j];

$s[$j] = $c;

}

}

sub intwt {

my ($N, $W) = @_;

my($i);

if ($N < 1.0) {

$i = 1;

$$W = $N;

}

if ($N >= 1.0) {

7.3 Multiprocessor Models 287

$i = $N;

$$W = 1.0;

}

return int($i);

}

The throughput projections from the SMP cache model abcache.pl are shown
in Fig. 7.13. The advantages of the write-back memory update policy are clear.

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processors (p)

P
ro

ce
ss

in
g

P
ow

er

WThru

WBack

Fig. 7.13. Relative scalability for caches using a write-through and write-back
protocol

Projected bus utilizations for the write-through policy are shown in Fig. 7.14.
The write-through policy means that the bus utilization is clearly dominated
by writes to main memory. Projected bus utilizations for the write-back policy
are shown in Fig. 7.15. The write-back policy means that the bus utilization is
dominated by reads that are caused by the increasing amount of invalidation
traffic.

7.3.5 Iron Law of Performance

The most common performance rating applied to a microprocessor is the
millions of instructions per second (MIPS) it can execute. Since MIPS has the
engineering dimensions of a throughput, or rate, it can rightfully be regarded
as a legitimate unit of performance in the sense of (2.3). The problem arises
when the MIPS rating is used to compare different microprocessors. Different
microprocessors use different instruction sets, and those instructions exhibit
different cycle times per instruction (CPI) to complete.

288 7 Multicomputer Analysis with PDQ

0

20

40

60

80

100

120

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processors (p)

B
us

 u
til

iz
at

io
n

Ubr

Ubw

Utot

Fig. 7.14. Bus utilizations for the write-through protocol

0

10

20

30

40

50

60

70

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Processors (p)

B
us

 u
til

iz
at

io
ns

Ubr

Ubw

Uinvl

Utot

Fig. 7.15. Bus utilizations for the write-back protocol

A somewhat more realistic performance measure can be arrived at by
incorporating the path length (PL) which measures the number of instructions
in a program. The elapsed time to complete a entire program can then be
written as:

time
pgm

=
(

instr
pgm

)(
cycle
instr

)(
time
cycle

)
. (7.9)

This relationship is used by microprocessor architects. It is sometimes referred
to as the iron law of performance because it involves such fundamental param-

7.4 Multicomputer Models 289

eters as the number of instructions executed and the number of CPU cycles
to execute an instruction; it appears to be immutable. Inverting this equation
and rearranging the order of the factors in the denominator produces:

pgm
time

=

(cycle
time

)
(cycle

instr

)(
instr
pgm

) . (7.10)

The number of programs completed per unit time is just the system through-
put, Xsys defined by (2.3). Then:

Xsys =

(cycle
time

)
(cycle

instr

)(
instr
pgm

) . (7.11)

If the time-base is taken to be measured in seconds, for example, then the nu-
merator can be measured in cycles per second or Hz. Moreover, modern micro-
processors run at clock frequencies in the GHz range. Abbreviating cycle/instr
as CPI, and instr pgm by the path length, PL, (7.11) can be rewritten as:

Xsys =
GHz

CPI × PL
. (7.12)

We can also interpret (7.12) in terms of the queueing theory in Chap. 2 as
follows. Think of a simple M/M/1 queueing center with the CPI representing
the service time per instruction and the PL as the number of visits to the CPU
in order to execute one program (e.g., a database transaction). From (2.9) the
average service demand Dcpu at the CPU is the product of the service time
Scpu and the visit count Vcpu at the CPU device. In other words, we have:

Xsys =
MHz

Scpu × Vcpu
=

MHz
Dcpu

. (7.13)

The CPU clock frequency in the numerator simply translates the throughput
units into transactions per second. We immediately recognize this as the sat-
uration throughput of the CPU in agreement with the assumption that the
workload is CPU-intensive.

7.4 Multicomputer Models

Having discussed scalability models for multiprocessors, we now turn to a scal-
ability analysis for multicomputers. We introduce an empirical method (first
presented in [Gunther 2000a]) for determining the optimal query processing
configuration based on knowledge of the saturation throughput.

290 7 Multicomputer Analysis with PDQ

...RAM

I/O

RAM

I/O

RAM

I/O

RAM

I/O

RAM

I/O

 Interconnection Network

 Back-end
 Processors

 Front-end Processors

 Local Area Network

Fig. 7.16. Typical architecture of a parallel query cluster

7.4.1 Parallel Query Cluster

The following analysis is based on a massively parallel database cluster ar-
chitecture represented schematically in Fig. 7.16. The essential architectural
subsystems are labelled as follows:

CLI: The number of client submitting queries into the cluster
FEP: Front-end processors that manage communications with network clients
BEP: Back-end processors
DSU: Disk storage units on the back-end processors
NET: High-speed interconnect to facilitate parallel query processing between

the FEPs and the BEPs

Even with the availability of large-scale clusters at relatively good price–
performance, performance tuning is not always straightforward because of
sensitivities to data partitioning and load balancing. Optimal tuning tech-
niques are specific to the particular cluster platform.

A more significant general problem is how to determine the optimal num-
ber of parallel BEP processors for a given size of the database, and that is the
problem we shall address here using PDQ. A simple rule of thumb suggests
that scaling the number of parallel processors should reduce the uniprocessor
response time according to:

R(p) =
R (1)

p
, (7.14)

where R(1) is the uniprocessor query time, and p is the number of physical
processors or the size of the BEP configuration in the SMP cluster.

Intuitively, we expect that the parallel query time should be reduced in
inverse proportion to the number of parallel processors applied to the query,

7.4 Multicomputer Models 291

Clients (N, Z)

FEP Processors

BEP Processor

BEP Processor

Disks

Disks

Fig. 7.17. Simple PDQ model of a multicomputer cluster architecture (Fig. 7.16)
running a homogeneous query workload

assuming the data is partitioned more or less uniformly across the DSUs. We
can use PDQ to see how well this intuition is supported.

The Perlscript for the PDQ queueing model in Fig. 7.17 follows. Identify-
ing our previous nomenclature with the associated Perlvariables, the model
parameters are: 800 CLIs ($users), 15 FEPs ($Nfep), 50 BEPs ($Nbep) and
100 DSUs ($Ndsu). In Sect. 7.4.2, we shall use the same PDQ model to de-
termine the optimal parallel processing configuration for the multicomputer
cluster.

#!/usr/bin/perl

#cluster.pl

use pdq;

$think = 10.0;

$users = 800;

$Sfep = 0.10;

$Sbep = 0.60;

$Sdsu = 1.20;

$Nfep = 15;

$Nbep = 50;

$Ndsu = 100;

pdq::Init("Query Cluster");

292 7 Multicomputer Analysis with PDQ

Create parallel centers

for ($k = 0; $k < $Nfep; $k++) {

$name = sprintf "FEP%d", $k;

$nodes = pdq::CreateNode($name, $pdq::CEN, $pdq::FCFS);

}

for ($k = 0; $k < $Nbep; $k++) {

$name = sprintf "BEP%d", $k;

$nodes = pdq::CreateNode($name, $pdq::CEN, $pdq::FCFS);

}

for ($k = 0; $k < $Ndsu; $k++) {

$name = sprintf "DSU%d", $k;

$nodes = pdq::CreateNode($name, $pdq::CEN, $pdq::FCFS);

}

Create the workload

$streams = pdq::CreateClosed("query", $pdq::TERM, $users, $think);

Set service demands using visits to parallel nodes

for ($k = 0; $k < $Nfep; $k++) {

$name = sprintf "FEP%d", $k;

pdq::SetVisits($name, "query", 1 / $Nfep, $Sfep);

}

for ($k = 0; $k < $Nbep; $k++) {

$name = sprintf "BEP%d", $k;

pdq::SetVisits($name, "query", 1 / $Nbep, $Sbep);

}

for ($k = 0; $k < $Ndsu; $k++) {

$name = sprintf "DSU%d", $k;

pdq::SetVisits($name, "query", 1 / $Ndsu, $Sdsu);

}

pdq::Solve($pdq::APPROX);

pdq::Report();

A drastically abbreviated initial section of the associated PDQ report shows
only the service demands for some of the 165 PDQ nodes.

****** Pretty Damn Quick REPORT *******

*** of : Tue Jun 22 11:08:26 2004 ***

*** for: Query Cluster ***

*** Ver: PDQ Analyzer v2.8 120803 ***

7.4 Multicomputer Models 293

****** PDQ Model INPUTS *******

Node Sched Resource Workload Class Demand

---- ----- -------- -------- ----- ------

CEN FCFS FEP0 query TERML 0.0067

CEN FCFS FEP1 query TERML 0.0067

...

CEN FCFS BEP0 query TERML 0.0120

CEN FCFS BEP1 query TERML 0.0120

...

CEN FCFS BEP48 query TERML 0.0120

CEN FCFS BEP49 query TERML 0.0120

CEN FCFS DSU0 query TERML 0.0120

CEN FCFS DSU1 query TERML 0.0120

...

CEN FCFS DSU98 query TERML 0.0120

CEN FCFS DSU99 query TERML 0.0120

Next, the SYSTEM Performance section of the PDQ report for the 50-BEP
cluster model reveals that the expected response time is 5.0923 s (line 24)
with 800-CLI queries in the system. This same response time also appears in
Table 7.2.

1 Queueing Circuit Totals:

2 Clients: 800.00

3 Streams: 1

4 Nodes: 165

5

6 WORKLOAD Parameters

7

8 Client Number Demand Thinktime

9 ---- ------ ------ ---------

10 query 800.00 1.9000 10.00

11

12 ***************************************

13 ****** PDQ Model OUTPUTS *******

14 ***************************************

15

16 Solution Method: APPROX (Iterations: 10; Accuracy: 0.1000%)

17

18 ****** SYSTEM Performance *******

19

20 Metric Value Unit

21 ----------------- ----- ----

22 Workload: "query"

23 Mean Throughput 53.0073 Job/Sec

294 7 Multicomputer Analysis with PDQ

24 Response Time 5.0923 Sec

25 Mean Concurrency 269.9270 Job

26 Stretch Factor 2.6801

27

28 Bounds Analysis:

29 Max Throughput 83.3333 Job/Sec

30 Min Response 1.9000 Sec

31 Max Demand 0.0120 Sec

32 Tot Demand 1.9000 Sec

33 Think time 10.0000 Sec

34 Optimal Clients 991.6667 Clients

Running the PDQ model with successively larger BEP/DSU configurations
produces the results in Table 7.2. The first column shows the number of pro-
cessors in the BEP complex. The second column shows the predicted query
time based on the PDQ queueing model, and the third column is an estimate
based on (7.14).

Although the differences are not great, the results in Table 7.2 indicate that
the query response times predicted by the simple hyperbolic model are more
pessimistic (longer) than those predicted by PDQ. This occurs because the
hyperbolic model is simply scaling the query time R (1) for a single-processor
configuration, and that configuration has maximal queueing. The additional
servers of the parallel queues in the PDQ model, on the other hand, have the
effect of scaling the service demand at each type of processing node, i.e., FEP,
BEP or DSU, as explained in Sect. 2.6.4. Nonetheless, we see that hyperbolic
scaling can provide a reasonable rule of thumb when estimating parallel query
response times for the cluster.

Another drawback of the hyperbolic model is that it cannot not tell us any-
thing about the optimal cluster hardware configuration. All we see in Fig. 7.18
is a region of diminishing performance gain somewhere around 60 BEP proces-
sors. Is there any way to determine the optimal cluster database configuration?

7.4.2 Query Saturation Method

In Chap. 5 we discussed the concepts of asymptotic bounds and balanced
bounds on system performance. In this section we introduce a similar idea,
the query saturation method, and show how it can be used to determine the
optimal configuration for a parallel query platform, assuming a homogeneous
aggregate query workload.

We begin with a variant of the balanced bounds techniques introduced in
Chap. 5 where we learned that a balanced system has the best performance.
In the simple case of two queueing centers arranged in tandem, a balanced
system requires that the utilizations be equal: U1 = U2. Since the throughput
X is the same at both queueing centers, it follows that the service demands

7.4 Multicomputer Models 295

Table 7.2. Query times for 800 CLI-ents as a function of BEP cluster configuration

Predicted query time (s)
BEPs PDQ Hyperbolic

1 471.23 471.23
10 40.18 47.12
20 16.85 23.56
30 9.68 15.71
40 6.60 11.78
50 5.09 9.42
60 4.25 7.85
70 3.75 6.73
80 3.42 5.89
90 3.18 5.24

100 3.02 4.71
110 2.89 4.28
120 2.79 3.93

must also be equal: D1 = D2 (Little’s law). Otherwise, the queueing center
with the largest service demand Dmax becomes the bottleneck and limits the
system throughput according to Xmax = 1/Dmax.

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120

Number of BEPs (p)

Q
ue

ry
 ti

m
e

(s
)

PDQ model

Hyperbolic

Fig. 7.18. Comparison of the hyperbolic and PDQ models

By analogy, consider the cluster to be comprised of two logical subsystems
in tandem: the FEP (front end) and a BEP (back end). If each subsystem

296 7 Multicomputer Analysis with PDQ

consists of just a single queueing center, then we expect the the BEP queue to
have a larger service demand due to its longer processing time: DBEP > DFEP .

However, as the BEP configuration is scaled up with more parallel queues
(Fig. 7.17) the service demand at each parallel node will be reduced. This
happens because the successive inclusion of more parallel queues in the BEP
subsystem, together with the requisite repartitioning of the data tables, means
fewer visits to each of the p BEP nodes in order to complete a query (cf.
Chap. 2). The BEP service demand at node p can be written in terms of the
visists as:

Dp = Vp Sp , (7.15)

where Vp = 1/p. As p becomes larger, the corresponding service demand is
reduced. The performance optimum occurs when the tandem subsystems be-
come balanced with DBEP = DFEP. How can we find this configuration?

In our discussion so far, we have focused on response time as the primary
performance metric for query workloads. Now, however, we shall find it useful
to include the query throughput as an aid in determining optimal cluster
configurations. For each BEP processor configuration in Table 7.2, there is a
saturation throughput value Xsat(p) corresponding to the point at which the
primary bottleneck occurs. That point is determined by Dmax in the BEP
subsystem.

Since Xsat is a direct measure of the maximum processing capacity of
each BEP configuration, it follows that Xsat must scale with p, the number of
processing nodes. In other words, Xsat(p) is a linear function of p. The satu-
ration throughput of any BEP configuration is simply p times the saturation
throughput Xsat(1) with a single BEP node:

Xsat(p) = p Xsat(1) . (7.16)

An important point is that Xsat(1) can be measured directly. Note also, that
Xsat(1) refers to the entire database back end including processors and disks.

In the PDQ model we have been considering the FEP capacity as fixed at
15 processors. As the capacity of the BEP configuration is scaled up, Dmax

in the BEP is effectively decreased. At some point, Dmax will become smaller
than that for the FEP. At that point, the FEP becomes the bottleneck that
limits query throughput and there is no virtue in adding more BEP capacity.
The saturation curve for the BEP develops a plateau in Fig. 7.19. We shall
refer to this point as the saturation optimum and the corresponding BEP
configuration as popt.

The value of popt can be determined as the point at which the saturation
line saturates, i.e., where it reaches the maximum global throughput of the
system. For the query cluster, the absolute global maximum in the system
throughput occurs when there is no BEP processing at all. For an isolated
and balanced FEP the minimum response time can be written as:

7.4 Multicomputer Models 297

Response time

Throughput

Saturation curve

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120 140

BEP Processing Nodes (p)

Fig. 7.19. The saturation throughput curve (upper) with the knee defining the op-
timal BEP cluster configuration at p = 90 nodes. The average throughput (middle)
provides no guidance because it depends on the amount of work in the system. Here,
the work is fixed at 800 CLI queries, but adding more queries into the system would
push the average throughput up toward the saturation curve

DFEP =
stages∑

k

Dk

∣∣∣∣∣
p=0

, (7.17)

where k represents the number of sequential pre-processing stages in the FEP
and the evaluation at p = 0 indicates that the BEP is isolated from the FEP.
Equation (7.17) corresponds to the isolated overhead for query pre-processing
time. The plateau in the Xsat line must therefore occur at the point where
the two curves intersect in Fig. 7.19. The two curves are given respectively by
(7.16) and (7.17). The intersection can be found by solving

p Xsat(1) =
1

DFEP
(7.18)

so that the optimal BEP configuration is given by:

popt =
1

Xsat(1)DFEP
. (7.19)

The knee in the query saturation curve corresponding to popt can be seen in
Fig. 7.19.

298 7 Multicomputer Analysis with PDQ

Example 7.1. The knee in the saturation throughput curve defines the opti-
mal BEP cluster configuration at p = 90 nodes. The average throughput in
Fig. 7.19 provides no guidance for finding this optimum because there not
enough work in the system. The amount of work is fixed at 800 concurrent
CLI queries and X(50) = 53.03 QPS. Adding more BEP capacity (increas-
ing p) does not increase the mean throughput. However, adding more queries
into the system does increase the mean throughput. For example, with 2800
concurrent CLI queries, X(50) = 77.56 QPS. ��
Why does the query saturation method work?

1. For a small query cluster with only one BEP processor the FEP service
demand is much less than the BEP processing time, i.e., the FEP overhead
is relatively small.

2. As more BEP processors are added with their associated DSU disks, and
the database tables restriped, the BEP processing time is reduced because
of fewer visits to each BEP node.

3. As more BEP processors are added their service demand is scaled down
by p according to (7.15).

4. Eventually, the reduced BEP service demand matches the FEP service
demand and the knee in Fig. 7.19 occurs.

5. Adding more BEP processors beyond this knee increases the cost of the
cluster without increasing performance (the plateau in Fig. 7.19) because
the FEP is now the system bottleneck.

Such is the power of parallelism (when you can get it!).

Example 7.2. Using (7.19), the query saturation method predicts the opti-
mum for the query cluster back ends as follows. We already know that
DFEP = 0.0067 at the front-end. Taking this value together with the single
BEP saturation throughput Xsat(1) = 1.67, we calculate the optimal config-
uration as:

popt =
1

1.67× 0.0067
= 89.83 BEPs ,

which agrees with the PDQ result (p = 90) in Table 7.3. ��
The PDQ model of the query cluster can be used to directly compute

the optimal BEP. We see from Table 7.3 that the optimal BEP processing
configuration occurs at p = 90 BEPs (and 180 DSU disks). With the optimal
database BEP configuration determined, the response times for a multiuser
query workload can be estimated. The results of running the PDQ model as
a function of different interquery arrival times (modeled as different think-
times) on the query cluster are summarized in Table 7.4.

7.5 Review

In this chapter we saw how to apply PDQ to the performance analysis of
symmetric multiprocessors (SMPs) and distributed multicomputer clusters.

7.5 Review 299

Table 7.3. Selected PDQ throughput estimates. The average query throughput
X(p) (center column) corresponds to the concave curve in Fig. 7.19. The knee occurs
at p = 90 for which the query time is 3.18 s (Table 7.2)

p X(p) Xsat(p)

1 1.66 1.67
10 15.94 16.67
50 53.03 83.33
70 58.19 116.67
90 60.69 150.00

100 61.45 150.00
120 62.07 150.00

Table 7.4. Predicted multiuser query times for various think times. The last row
corresponds to the number of CLI-ents in the PerlPDQ model of Sect. 7.4.1

Optimized query performance (s)
Users Z = 10 Z = 20 Z = 30 Z = 40 Z = 50

1 1.89 1.89 1.89 1.89 1.89
200 2.13 2.02 1.98 1.96 1.94
400 2.41 2.15 2.07 2.02 2.00
600 2.76 2.31 2.16 2.09 2.05
800 3.18 2.48 2.27 2.17 2.11

For SMPs, caching effects and cache protocols can be a significant determinant
for performance and scalability. This is particularly true for workloads that
involve shared writeable data, e.g., online transaction processing databases.

For read-intensive workloads, e.g., data mining or decision support, mul-
ticomputer clusters offer better response time performance. Since the data is
not being updated, previously read data can be cached and queries can be
processed in parallel across a striped database. The optimal back-end parallel
configuration can be determine by examining the saturation throughput for
each configuration.

Exercises

7.1. Using the definition of processing power P in Sect. 7.3.2, show:
(a) The mean number of enqueued processors is p − P (1 + Ω).
(b) The mean number of processors accessing memory is Ω P.

7.2. A 1.25-GHz CPU executes a TPC-C transaction with a path length of
965,000 instructions, and the measured CPI is 0.71 cycles per instruction.
What is the transaction per second (TPS) rate?

7.3. Calculate the optimal back-end configuration for a data mining cluster
for which a single node has a maximum throughput of 19.7 QPS (queries per
second) and the front-end processing is capable of 500 QPS.

8

How to Scale an Elephant with PDQ

8.1 An Elephant Story

There is a story about three blind men and an elephant that goes like this.

The first blind man touches the ele-
phant’s trunk and exclaims, “This
is a huge tree!” The second blind
man happens to be holding onto the
elephant’s tail so he counters with,
“No, it’s a snake!” The third blind
man who is touching the elephant’s
flank rejoins, “You’re both wrong!
It’s a wall.”

Each blind man thinks he is right and the others are wrong, even though all
three of them are touching the same elephant.

Similarly, three performance engineers—who were not blind (at least, not
in the above sense)—were reviewing performance data collected from a large-
scale application server. At some point, the following conversation ensued:

Engineer 1: “Wow! This system scales linearly!”
Engineer 2: “No it doesn’t! The system becomes maxed out.”
Engineer 3: “You’re both wrong! The server supports the desired number of

users.”

As you’ll soon see, all three engineers are correct because they are talking
about different aspects of the same performance characteristic, just like the
blind men and the elephant.

Performance data that are produced by load tests and benchmarks are
not the same thing as information. Extracting performance information out
of performance measurements requires knowing what to look for, which in
turn requires knowing where to look, or, perhaps more importantly, knowing
how to look at performance measurements. Knowing where and how to look

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_8, © Springer-Verlag Berlin Heidelberg 2005

302 8 How to Scale an Elephant with PDQ

is akin to having the right kind of geographical map. In this chapter you will
learn how PDQ can be used like a performance map.

This chapter shows you how the queueing concepts in Chaps. 2, 3, and 5
can be applied to the scalability analysis of load test and benchmark data. In
particular, we examine the SPEC SDM multiuser benchmark. A key lesson is
that in order to carry out performance analysis with PDQ, it is essential to
obtain steady-state measurements of the throughput (and the corresponding
response time) at each user load. These time-averaged values can then be used
to parameterize a PDQ model.

In addition, you will see that Amdahl’s law provides a functional defi-
nition of application scalability. In particular, it corresponds to worst-case
synchronous queueing, and therefore represents another type of bound on
throughput performance in addition to those discussed in Chap. 5.

8.1.1 What Is Scalability?

Scalability is a perennial hot topic, most recently of interest for newer appli-
cation architectures based on technologies such as peer-to-peer networks (see,
e.g., www.ececs.uc.edu/~mjovanov/Research/gnutella.html), PHP, Java
(see e.g., www.onjava.com/pub/a/onjava/2003/10/15/ php_scalability.
html), and Linux (see e.g., lse.sourceforge.net).

Scalability is an abstract notion that too often remains either poorly de-
fined [Joines et al. 2002, Chap.1] or remains undefined altogether. Simply
put, scalability is a relation among performance metrics that characterizes
the rate of diminishing returns as the dimensions of the system are increased.
This means that scalability can actually be expressed in a mathematical form.
Therefore, scalability is not a number, but a function. An example of a well-
known scalability function is Amdahl’s law [Amdahl 1967] for processor speed-
up:

SA(p) =
p

1 + α(p − 1)
. (8.1)

Equation (8.1) expresses scalability very simply in terms of the number of
physical processors p in the server configuration and a single parameter α that
quantifies the degree of diminishing returns at each processor configuration.
The relative speed-up SA(p) is defined by the ratio of the execution time on
p processors to the execution time on a single processor.

Since the value of α lies in the range 0 ≤ α ≤ 1, it can be interpreted
alternatively as:

1. a measure of the level of contention in the system
2. the fraction of time spent waiting for a resource, e.g., a database lock
3. the percentage of serial execution time in the workload
4. the degree of single-threadedness in the workload

It turns out that item 1 is most significant for the subsequent discussion.

8.1 An Elephant Story 303

In an ironic twist of history, the original argument by Gene Amdahl [1967]
has been doubly misunderstood. First, (8.1), usually attributed to him, does
not appear in his paper, which is a purely empirical account. Second, his origi-
nal argument was an attempt to convince people that multiple processors were
less cost effective than the fastest available single processors. Ironically, these
days, (8.1) always appears in the context of parallel processing performance.

History notwithstanding, (8.1) can be generalized in two ways.

1. Another parameter β can be introduced to quantify the degree of inco-
herency in the system (e.g., cache-miss latency). The generalized scalabil-
ity function is:

SG(p) =
p

1 + α(p − 1) + αβp(p − 1)
, (8.2)

and is discussed in more detail in Gunther [2000a, Eqn. 6.24 on p. 189],
and [Gunther 2002b].

2. Application scalability can be expressed by modifying (8.1) to be a func-
tion of user load N with the processor configuration p held fixed. See (8.9)
in Sect. 8.3.2.

If there is no delay for maintaining coherency, the β parameter vanishes, and
(8.2) reduces to Amdahl’s law (8.1).

Another important point to note about (8.2) and (8.1) is that neither of
these scalability functions contains any explicit reference to the platform archi-
tecture, the interconnect technology, the operating system, or the application
that is running. All this complexity is hidden in the measurable values of α
and β. Therefore, these scalability functions must be universally applicable!

We now turn to some public-domain benchmark data from the www.spec.
org Web site to see how these scalability concepts can be applied.

8.1.2 SPEC Multiuser Benchmark

The SPEC benchmark, most relevant for our scalability analysis, is called
SDET from the SDM (System Development Multitasking) suite www.spec.
org/osg/sdm91 which is currently part of the OSG (Open Systems Group)
working group within the SPEC organization.

The SDET workload simulates a group of unix software developers do-
ing compiles, and edits, as well as exercising other shell commands. These
multi-user activities are emulated by concurrently running multiple copies of
scripts containing the shell commands. The relevant performance metric is the
throughput measured in scripts per hour. A very important distinguishing fea-
ture of the benchmark is that it does not rely on reporting a single metric in the
way that www.spec.org/osg/cpu2000/ does. Arguably, the SPEC CPU2000
metric has replaced the notion of nominal MIPS (cf. Sect. 7.3.5). Rather, the
reporting procedure requires that a graph showing a significant portion of the

304 8 How to Scale an Elephant with PDQ

Table 8.1. SPEC SDET benchmark data for a 16-way SPARCcenter 2000

Concurrent Throughput Normalized
generators (scripts/hour) throughput

0 0.00 0.00
1 64.90 1.00

18 995.90 15.35
36 1,652.40 25.46
72 1,853.20 28.55

108 1,828.90 28.18
144 1,775.00 27.35
216 1,702.20 26.23

throughput characteristic must be constructed. The SPEC SDET run rules
indicate how this throughput data must be collected and presented.

The results used in the subsequent analysis come from the SPEC SDET
benchmark for a 16-way Sun SPARCcenter2000. The full report can be down-
loaded from www.spec.org/osg/sdm91/results/res9506/. Those benchmark
data are summarized here in Table 8.1 and Fig. 8.1. The most significant fea-

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 50 100 150 200 250

Concurrent Workloads (N)

S
cr

ip
ts

/H
ou

r
(X

)

Fig. 8.1. A plot of the throughput measurements in Table 8.1 which a reporting
requirement of the SPEC SDET benchmark

tures of this benchmark are:

1. The throughput characteristic has a maximum.

8.1 An Elephant Story 305

2. The maximum throughput is 1,853.20 scripts/h.
3. The maximum throughput occurs at 72 generators or emulated users.
4. Beyond the peak, the throughput becomes retrograde.

These benchmark results are obtained by applying the following steady-state
measurement methodology.

8.1.3 Steady-state Measurements

An important but hidden feature of benchmark results like those plotted in
Fig. 8.1 is that each point on the plot corresponds to the average throughput
evaluated when the throughput rate reaches steady state. The relationship

Ramp up Ramp down

Elapsed time

In
st

an
ta

ne
ou

s
th

ro
ug

hp
ut

Steady-state

Fig. 8.2. Steady-state measurements of instantaneous throughput for a fixed user
load. The steady-state throughput (center) is measured as a function of time by first
ramping-up the workload (left) and later ramping-down (right) once the statistical
average throughput has been determined

between steady-state (Fig. 8.2) measurements of the instantaneous through-
put and the average throughput at each user load level is shown in Fig. 8.3.
The steady-state average for a given user load is determined by taking mea-
surements over some measurement period T and eliminating any ramp-up or
ramp-down periods from the data.

By way of contrast, the SPEC jAppsServer2002 benchmark requires that
such ramp-up and ramp-down data be reported along with the steady-state
throughput values.

To get the most information out of benchmark or load testing data like
these, you need a performance model. This is another performance-by-design

306 8 How to Scale an Elephant with PDQ

A
ve

ra
ge

 t
hr

ou
gh

pu
t (

X
)

User load (N)

Fig. 8.3. The relationship between steady-state measurements of the instantaneous
throughput X(t) and the system throughput characteristic X(N). The overall mean
throughput characteristic (dashed curve) is determined by repeating (inset plots)
the steady-state measurement process in Fig. 8.2 for each user load N

role for PDQ. We begin by putting together some of the pieces of this bench-
mark elephant.

8.2 Parts of the Elephant

We saw in Chaps. 2 and 3 that we need to have data on system resource
consumption such as: process service times, disk busy, and so on, to construct
a performance model. Unfortunately, the SPEC SDET benchmark rules do
not require the reporting of such performance metrics, so we cannot proceed
directly in that fashion. Instead, we need to deduce that information from the
data we do have.

The maximum measured throughput in Table 8.2 is 1,853.20 scripts/h.
You should not take the decimal places in these measurements too literally.
Typical performance measurements have an error range of about ±5%, which
would put the maximum throughput Xmax anywhere between 1,760 and 1,945
scripts/h. The benchmark platform would have been configured and tuned to
generate this maximum throughput number, after all, that is what serious
benchmarking is about. Moreover, part of the tuning process is to make the
system processor-bound, rather than memory-bound or disk-bound. Using the
concepts presented in Chap. 5, we can presume that throughput performance
was bottlenecked by saturated CPUs, and this will be usefl for constructing
our PDQ model.

8.2 Parts of the Elephant 307

Table 8.2. Summary of SPEC benchmark analysis

Performance metric Value Unit

Max. throughput Xmax 1,853.20 Scripts per hour
Peak loading Npeak 72 Concurrent generators
Bottleneck demand Dmax 0.00054 Hours per script
Average think-time Z 0.01487 Hours (free parameter)

8.2.1 Service Demand Part

We start with the relationship:

Xmax =
1

Dmax
, (8.3)

from Chap. 2 where Dmax is the service demand at the bottleneck resource,
the CPU in this case. Inverting this equation, we get:

Dmax =
1

Xmax
. (8.4)

Since we know Xmax = 1, 853.20 scripts/h from Table 8.1, we can calculate
that:

Dmax =
1

1, 853.20
= 0.00054 hours per script , (8.5)

which is equivalent to 1.94 seconds per script.

8.2.2 Think Time Part

We cannot determine the value of the thinktime parameter Z directly from
the benchmark data but we can estimate it using the response time law:

X(N) =
N

R + Z
, (8.6)

from Chap. 2. The uncontended throughput occurs when N = 1, and in the
absence of any queueing R = Dmax. Therefore:

X(1) =
1

Dmax + Z
. (8.7)

We can simply read off X(1) = 64.90 scripts/h from Table 8.1, and since we
have already calculated Dmax = 0.00054 h, we can use (8.7) to calculate Z.
The result is Z = 0.01487 h.

308 8 How to Scale an Elephant with PDQ

8.2.3 User Load Part

Based on Sect. 5.3.3 in Chap. 5, a simple estimator of the optimal number of
users that the system can support is given by:

Nopt =
⌊

Dmax + Z

Dmax

⌋
, (8.8)

where �·� means the floor function that rounds down to the nearest inte-
ger. Substituting the appropriate values from our performance model, we find
Nopt = 28, which is much lower than the peak measured throughput at 72
generators.

If the average user load is maintained too far below this optimum (i.e.,
N � Nopt) the system capacity is under-utilized, i.e., resources that have
already been paid for are not being utilized efficiently. Conversely, if the user
load is maintained too much above this optimum (i.e., N � Nopt) the system
will become saturated and response times will increase dramatically.

8.3 PDQ Scalability Model

Now we are in a position to construct a simple queueing model of this bench-
mark system using PDQ. Since the benchmark is driven near its peak capabil-
ity, we assume that the performance is controlled primarily by the bottleneck
resource represented by the single PDQ node (Fig. 8.4). To construct this

N, Z

S

R(N)

X(N)

Fig. 8.4. Simple queueing model of the SPEC benchmark

simple model we use the following benchmark parameters:

1. The maximum throughput: Xmax = 2000 scripts/h
2. The maximum service demand: Dmax = 0.0005 h
3. The thinktime for each user: Z = 0.0149 h

8.3 PDQ Scalability Model 309

Here, we are allowing (perhaps optimistically) for the fact that if there was
no throughput degradation above the peak load at 72 clients, the achievable
throughput might be closer to 2000 scripts/h. We do this by adjusting Dmax

to be slightly smaller (line 9 below) than was determined in Table 8.2. We
also set the number of clients at 50, so as to be above the expected value of
Nopt.

1 #! /usr/bin/perl

2 # elephant.pl

3

4 use pdq;

5

6 $clients = 50; # load generators

7 $think = 0.0149; # hours

8 $Dmax = 0.0005; # hours

9

10 pdq::Init("SPEC SDET Model");

11

12 $pdq::streams = pdq::CreateClosed("BenchWork", $pdq::TERM, $clients, $think)

13 $pdq::nodes = pdq::CreateNode("BenchSUT", $pdq::CEN, $pdq::FCFS);

14 pdq::SetDemand("BenchSUT", "BenchWork", $Dmax);

15

16 pdq::SetWUnit("Scripts");

17 pdq::SetTUnit("Hour");

18

19 pdq::Solve($pdq::EXACT);

20 pdq::Report();

The normalized results shown in Fig. 8.5 are derived from the following PDQ
report:

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Tue Feb 10 11:55:45 2004 ***

5 *** for: SPEC SDET Model ***

6 *** Ver: PDQ Analyzer v2.8 120803 ***

7 ***************************************

8 ***************************************

9

10 ***************************************

11 ****** PDQ Model INPUTS *******

12 ***************************************

13

14 Node Sched Resource Workload Class Demand

15 ---- ----- -------- -------- ----- ------

16 CEN FCFS BenchSUT BenchWork TERML 0.0005

17

18 Queueing Circuit Totals:

19

310 8 How to Scale an Elephant with PDQ

20 Clients: 50.00

21 Streams: 1

22 Nodes: 1

23

24 WORKLOAD Parameters

25

26 Client Number Demand Thinktime

27 ---- ------ ------ ---------

28 BenchWork 50.00 0.0005 0.01

29

30 ***************************************

31 ****** PDQ Model OUTPUTS *******

32 ***************************************

33

34 Solution Method: EXACT

35

36 ****** SYSTEM Performance *******

37

38 Metric Value Unit

39 ----------------- ----- ----

40 Workload: "BenchWork"

41 Mean Throughput 1999.6137 Scripts/Hour

42 Response Time 0.0101 Hour

43 Mean Concurrency 20.2058 Scripts

44 Stretch Factor 20.2097

45

46 Bounds Analysis:

47 Max Throughput 2000.0000 Scripts/Hour

48 Min Response 0.0005 Hour

49 Max Demand 0.0005 Hour

50 Tot Demand 0.0005 Hour

51 Think time 0.0149 Hour

52 Optimal Clients 30.8000 Clients

53

54 ****** RESOURCE Performance *******

55

56 Metric Resource Work Value Unit

57 --------- ------ ---- ----- ----

58 Throughput BenchSUT BenchWork 1999.6137 Scripts/Hour

59 Utilization BenchSUT BenchWork 99.9807 Percent

60 Queue Length BenchSUT BenchWork 20.2058 Scripts

61 Residence Time BenchSUT BenchWork 0.0101 Hour

The optimal load is reported on line 52 as 30.80 clients; this is slightly higher
than the 28 clients estimated in Sect. 8.2.3 because we manually adjusted the
bottleneck service demand Dmax. The PDQ node in Fig. 8.4 is saturated at
99.98% busy (line 59 above).

The PDQ prediction (the upper curve in Fig. 8.5) represents the best
possible outcome that one could expect from this benchmark platform. The

8.3 PDQ Scalability Model 311

measured data adheres fairly closely to the PDQ prediction until it gets above
CPU saturation, at which point the throughput falls slightly below theoret-
ical expectations and heads toward the Amdahl bound (the lower curve in
Fig. 8.5).

8.3.1 Interpretation

This very simple queueing model of the SPEC benchmark data reveals a
tremendous amount of information about the performance of this unix ele-
phant. Where one might have expected to build a simulation model of this
otherwise complicated multiprocessor platform, we have actually arrived at a

0

5

10

15

20

25

30

0 50 100 150 200 250

Concurrent Workloads (N)

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t C

(N
)

Csdm(N)

Cmva(N)

Amdahl

Fig. 8.5. SPEC benchmark data shown together with the PDQ prediction (upper
curve) and the Amdahl bound (lower curve)

very close approximation to its SPEC benchmark performance characteristics
using a PDQ queueing model with just a single contention point (Fig. 8.4).
A real multiprocessor system has many contention points, e.g., memory bus
arbitration, spin-locks, and i-node locks, just to name a few. Remarkably, we
have subsumed all those details into a single queue without too much loss of
generality or accuracy. How did we get away with it?

312 8 How to Scale an Elephant with PDQ

The key concept to recognize is the single queue corresponds precisely to the
benchmark goal of making the workload CPU-bound. Recall that the workload rep-
resents multiple unix software developers, and the benchmark is a stress test. This
single point of contention has the side effect of making the measured throughput
characteristic (the upper curve in Fig. 8.5) rise almost linearly up to the saturation
plateau. It is this linear characteristic in the measured throughput that validates
our choice of a single PDQ queueing node in Fig. 8.4.

Real software developers would have significant think-times, and a real mul-
tiprocessor platform would have multiple contention points. Those additional
contention points (represented as additional queueing nodes in PDQ) would
tend to reduce the measured throughput. In other words, the real throughput
characteristic would tend to approach the saturation plateau with a much
slower rise. The lower bound on the system throughput is shown as the lower
curve in Fig. 8.5. It turns out that this lower bound is identical to the curve
produced by Amdahl’s law (8.1) in a slighlty different guise.

8.3.2 Amdahl’s Law

Amdahl’s law in (8.1) can be reexpressed in terms of the number of user
processes N :

SA(N) =
N

1 + α(N − 1)
, (8.9)

instead of the number of physical processors p. This follows from the fact that
the processor configuration was fixed at p = 16 in the benchmark platform,
while the number of user processes was varied in the range 1 ≤ N ≤ 216
(Table 8.2). The throughput in Fig. 8.1 was then measured as a function of
N , or concurrent user scripts in the SPEC benchmark terminology.

The author has shown elsewhere [Gunther 2002a, 2004] that the α parame-
ter in (8.1) is determined by the bottleneck demand (Dmax) and the thinktime
(Z) in the queueing circuit by virtue of the relationship:

α =
Dmax

Dmax + Z
. (8.10)

Equation (8.10) contains the following two special cases:

1. α = 0: No serialization of the workload; this condition is guaranteed when
there is no service demand (Dmax = 0) in (8.10). With this condition, all
the virtual users are purely in a think state and there is zero serialization.

2. α = 1: A single-threaded workload with no available concurrency; this
condition is guaranteed when there is no thinking delay (Z = 0) in (8.10).
With this condition, the virtual users are always waiting for service be-
cause they are 100% serialized.

8.3 PDQ Scalability Model 313

These cases correspond precisely to the extreme values of α. For the values
of Dmax and Z from the SPEC benchmark data, it can be determined that
α = 0.0325, or the workload is serialized is 3.25% of the time. Here, however,
we have provided a queueing theory interpretation of α. But what is the
queueing theory interpretation of the Amdahl bound?

Following Sect. 8.1.3, the PDQ model assumes that the benchmark system
is in steady state at each user configuration N where measurements are taken.
That means some client users (i.e., benchmark workload generators) are being
serviced while others are in a thin state. The PDQ model also assumes that no
user can have more than one outstanding request being serviced, i.e., another
request cannot be issued by the same user script until the previous request
has been serviced.

The Amdahl bound represents a worst-case scenario where all the users is-
sue their requests simultaneously! Consequently, all N requests become piled
up at the CPU queue in Fig. 8.4. Rather than the asynchronous queueing
implied in Chap. 3, the Amdahl bound (8.9) corresponds to worst-case syn-
chronous queueing, i.e., an all-or-nothing situation with all requests either
waiting in the queue or thinking. Either case represents low throughput. The
relative proportions of thinking time Z and service time Dmax determine the
actual value of α in equation 8.10. In the SPEC SDET benchmark Z is near
zero (Table 8.2).

An analogous situation arises for the hardware version of Amdahl’s law
(8.1). The serial fraction of the workload can be thought of as follows. A
processor makes a request for data. It could make such a request in different
ways. An efficient process would be for the requesting processor to contact
each of the other processors successively until it gets the needed response. The
remaining (p − 2) processors would continue to compute uninterrupted. In this
way, the outstanding request and computation would overlap asynchronously.
But Amdahl’s law is not a represention of maximum efficiency.

Instead, the dynamics expressed by Amdahl’s law means the request-
ing processor broadcasts its request to all the other processors simultane-
ously [Gunther 2000a, Chap. 14], thereby interrupting them all simultaneously.
In order to process the request, all the other processors must stop computing,
listen to, and process the request to see if they are the processor that needs
to respond before continuing with their own computation. Once again, this is
an all-or-nothing situation, just like synchronous queueing.

The important conclusion of this section is that Amdahl’s law corresponds
to synchronous queueing of requests and represents another bound on through-
put performance in addition to those discussed in Chap. 5.

Amdahl’s law cannot account for the retrograde throughput present in
the SDET benchmark data of Fig. 8.1. It is possible, however, to enhance
our simple queueing models to include it. We have assumed that the service
demand Dmax is constant (e.g., 1.94 s). This gives rise to the saturation plateau
(upper curve) in Fig. 8.5. If we relax that assumption and permit the service
demand to increase with the load, long queues will persist and the throughput

314 8 How to Scale an Elephant with PDQ

will begin to fall. One way to achieve this effect is through the use of a load-
dependent server described in Chaps. 6 and 10.

8.3.3 The Elephant’s Dimensions

So, how big is this unix elephant? We collect all the various estimates from
our queueing model analysis (Sect. 8.3) in Table 8.3.

Table 8.3. Predicted dimensions of our benchmarked elephant

Performance metric Value Unit

Max. throughtput Xmax 2,000.00 Scripts per hour
Bottleneck demand Dmax 0.0005 Hours per script
Average thinktime Z 0.0149 Hours (free parameter)
Optimal loading Nopt 31 Concurrent users
Serial fraction α 3.25 Percent

In this particular case, a great deal of the CPU service demand is being
spent in system time by the unix kernel. Further reduction in those times
might be achieved by implementing such changes as:

• improving streams-queue management
• using finer granularity locks for threads
• converting singly linked lists to doubly linked lists
• using a malloc() on fork() rather than expensive page faults
• using more efficient hashing
• applying processor affinity

This level of performance enhancement typically requires detailed investiga-
tion of both the operating system and the application. The average think-time
is not a number that is easy to identify by direct measurement. It is often set
to zero in the benchmark scripts and should be treated here as a modeling
parameter.

Finally, we review how well our intrepid performance engineers in Sect. 8.1
fared in assessing this unix elephant.

• Engineer 1 was essentially correct as far as he went. But the remainder of
the throughput characteristic tells the real story.

• Engineer 2 was not wrong, but was perhaps guilty of being too literal. The
benchmark system is being overdriven. This may indeed be a requirement
either for stress testing or for “bench-marketing,” where a single peak
number looks more impressive when quoted out of context from the other
measurements.

• Engineer 3 was too optimistic. The optimal load of 28 users is less than
half that expected from the benchmark data (i.e., the peak at 72 users).

8.4 Review 315

As can be seen in Fig. 8.1, the application of 72 generators has already
driven the system into saturation and the engineer did not take this into
account.

Needless to say, they are all talking about the same benchmark elephant.
The Amdahl bound (which the benchmark data does indeed approach) is

the more likely throughput characteristic of a general multiprocessor applica-
tion. There is usually a lot more runtime serialization in an application than
most people realize, which makes writing efficient applications or multipro-
cessors (Chap. 7) a difficult task [Gunther 2000a, Appendix C, Guidelines for
Making Multiprocessor Applications Symmetric].

8.4 Review

This chapter has shown you how some of the queueing concepts presented in
Chaps. 2, 3, and 5 can be applied to the performance analysis of load test and
benchmark data. In particular, we considered an example application based
on SPEC SDM multiuser benchmark data.

The SDM benchmark source codes are available for a nominal fee from the
SPEC Web site at www.spec.org/osg/sdm91/. If this benchmark looks at all
relevant, you might consider purchasing it and tailoring the scripts to create
your own customized benchmark harness.

In order to carry out performance analysis with PDQ it is essential to
obtain steady-state measurements of the throughput (and the response time)
at each user load point. These time-averaged values can then be used to pa-
rameterize a PDQ model of the type discussed in Sect. 8.3.

Amdahl’s law provides a functional definition of application scalability.
In Sect. 8.3.2 we showed that it also corresponds to worst-case synchronous
queueing of requests, and therefore represents another bound on throughput
performance in addition to those discussed in Chap. 5.

Our single contention point PDQ model does not account for the data
falling away from the saturation plateau toward the Amdahl bound (the lower
curve in Fig. 8.5). However, the PDQ model could include such effects, and a
more detailed discussion of that technique is given in Chap. 10.

Exercises

8.1. (a) Substitute the expression (8.10) for α into (8.9) and show that it
reduces to

SA(N) =
(

N

NDmax + Z

)
(Dmax + Z). (8.11)

(b) Convince yourself that NDmax in the denominator of (8.11) can be inter-
preted as Rmax i.e., maximal residence time due to maximal queueing.
(c) Defining

316 8 How to Scale an Elephant with PDQ

Xsync(N) =
N

Rmax + Z
,

apply (8.7) to (8.11) and show that

SA(N) =
Xsync(N)

X(1)
.

(d) Interpret the expression in part (c). (Hint: Read Sect. 8.3.2)

8.2. Who was the original author of the SDET benchmark?

8.3. Derive Amdahl’s law.

8.4. What changes would need to be reflected in the parameters of the PDQ
model elephant.pl to move the optimal load point to the measured peak
load point, i.e., Nopt = 72?

8.5. Plot SG(p) in (8.2) for integral processor configurations in the range
0≤p≤100, with α = 0.10, and incrementing β by 0.10 in the range 0≤β≤1.
How do these curves compare with SA(p)?

9

Client/Server Analysis with PDQ

9.1 Introduction

In this chapter we present performance analysis for client/server architectures
using PDQ. This material is the most complex use of PDQ so far in that it
draws on the techniques presented in previous chapters and extends them to
software and communication network analysis.

Many modern computing environments are moving to a more distributed
paradigm, with client/server being one of the most common distributed archi-
tectures in use today (Fig. 9.1). But the fragmentation of computer resources
across networks has also broken the notion of centralized performance man-
agement that worked for mainframe applications. Consequently, performance

user
process

client
process

TCP/IP
driver

server
processes

Client-side

Request on
well-known

port 21

Response on
ephemeral
port 300

Server-side

TCP/IP
driver TCP/IP

packet network

Client addr: 1.2.3.4 Server addr: 1.2.3.5

Fig. 9.1. Classical client/server process architecture

management is a major problem once again, and those business operations
that have been quick to adopt client/server, technology are now starting to
recognize the hidden costs of providing services with consistent performance.
Those implementing client/server applications are learning to demand assur-
ance about performance in terms of service level agreements (SLAs).

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_9, © Springer-Verlag Berlin Heidelberg 2005

318 9 Client/Server Analysis with PDQ

In this chapter, you will learn how to apply PDQ to the performance
analysis of a multitier B2C client/server environment. A key point to note
is that PDQ can be used to predict the scalability of distributed software
applications, not just hardware as in Chap. 7. This is achieved by using the
workflow analysis of Sect. 9.3.3.

Moreover, the approach presented here shows you how to make bench-
marking and load testing more cost-effective. Load test results only need to
be obtained on a relatively sparse set of smaller test platform configurations.
These data can be used to parameterize a PDQ model which, in turn, can
be used to predict the performance of the client/server application once it is
deployed into production. Thus, PDQ offers another way to keep the cost of
load testing complex distributed applications under control.

9.2 Client/Server Architectures

From the standpoint of computer technology, client/server refers to a software
interface specification shown schematically in Fig. 9.1. The client/side of the
interface makes requests and the server side of the interface provides the
service usually without the client process understanding how the service is
actually implemented. From the standpoint of the services provided, it is
irrelevant where the client and server processes are physically located and
which resources they consume in order to do the processing. This creates a
very flexible computing environment.

So how does the client/server software interface work? The rules that the
client and server processes communicate are called a protocol. Client/server
is a special case of distributed computing.

Client/server applications can be implemented using a variety of protocols,
but Transmission Control Protocol over Internet Protocol (TCP/IP) is among
the most commonly chosen. Any TCP/IP network connection between a client
process and services provided by a remote host requires the following items:

• Client-side IP host address, e.g., 1.2.3.4
• Server-side host address, e.g., 1.2.3.5
• Server process on a well-known port number, e.g., 21
• Client process on an ephemeral port number, e.g., anything above 255
• Process communication protocol, e.g., TCP, UDP

All this information gets encapsulated in one or more IP packets, which are
then transmitted over the network, along with either the request message or
the data response. This is the basis of the transparency offered by client/server
architectures.

From the performance analyst’s standpoint, however, knowing which soft-
ware processes are executing and on which remote hardware resources is vital
to any kind of performance analysis. As we shall see shortly, this is the Achilles’
heel of many client/server applications.

9.2 Client/Server Architectures 319

Database
services

Client
process

Business
Logic

Presentation
services

(a) Two-tier

Database
services

Client
process

Application
services

Web
services

(b) Three-tier

Fig. 9.2. Comparison of (a) two-tier and (b) three-tier client/server architectures

The kind of distributed performance measurements required are discussed
in Gunther [2000a, Chap. 4], but this level of integrated performance moni-
toring is still in a rather immature state. A whimsical analogy with remotely
monitored pizza delivery in Gunther [2000a, Chap. 8] highlights the require-
ments. The upshot of that analysis is that you need a client/server architecture
(tools) to manage a client/server architecture (application). This is easy to
say, but hard to do.

9.2.1 Multitier Environments

The classic client/server model is a master/slave relationship, where the client
process resides in one physical location, e.g., on a desktop, hand-held per-
sonal digital assistant (PDA), or cell phone, and the server process resides
in a different physical location. Both processes are connected via a network.
Figure 9.2(a) exemplifies this is the basic two-tier architecture.

9.2.2 Three–Tier Options

In a three-tier approach, like that shown in Fig. 9.2(b), another layer of servers
is inserted between the clients and the data servers. These second-tier servers
provide dual functionality: they can act as clients that make requests to the
appropriate data sources (application servers), and they function as servers
for the desktop clients (function servers). A three-tiered architecture divides
applications into parts that run on different types of platforms.

320 9 Client/Server Analysis with PDQ

Database
services

Client
process

Business
Logic

Web
services

Presentation
services

(a) Partitioned presenta-
tion and business logic

Database
services

Client
process

Web
services

Business
Logic

Presentation
services

(b) Combined presenta-
tion and business logic

Fig. 9.3. Comparison of logical three-tier client/server architectures. In (a) the
presentation logic and business logic separated across tiers, while in (b) they are
combined on the same tier and interact through an API

The clients support the presentation layer of the application to display
data retrieved from the server side, e.g., databases. The application servers
process business applications such as financial transactions and marketing
queries. The data sources range from SQL databases to legacy application
programs. A client/server architecture also lets the system administrator or
architect separate the business logic from the actual processing logic (Fig. 9.3).
This modularity enables business changes to be rapidly incorporated into
applications.

A three-tier architecture can also be expanded horizontally by adding dif-
ferent types of application servers and different types of databases. This ad-
ditional capacity and functionality can be enhanced in a way that is quite
transparent to the clients.

The flexibility and scalability of a three-tiered (or n-tiered) architecture
comes at the price of greater complexity of applications and management.
Modern client/server development environments offer facilities such as object
libraries, 4GL development languages, and dynamic directories to assist in
dealing with multitiered complexity. A primary goal of these tools is to facil-
itate changes in the environment without rebuilding the client applications.

9.3 Benchmark Environment 321

In practice, the performance of a multitiered application will also be de-
termined by such factors as:

• How much of the client user interface runs on the application server.
• Whether or not presentation services and business logic reside on the same

physical server. (Fig. 9.3)
• How much of the application logic runs on the database servers.
• How much data is placed on the application server.

For more on the impact of business logic placement on performance and scala-
bility is www.onjava.com/pub/a/onjava/2003/10/15/php_scalability.html.

9.3 Benchmark Environment

In this section we demonstrate how to construct and evaluate performance
models of modern three-tier client/server architectures. The environment to
be analyzed is a business-to-consumer (B2C) application intended to sup-
port 1,000 to 2,000 concurrent Web-based users. The analysis is to be made
against the benchmark platform in Fig. 9.4, which is on the scale of a TPC-
W-type benchmark. The application spans a distributed architecture involv-

Fig. 9.4. Multitier client/server benchmark environment

ing PC benchmark drivers, multiple Web servers, an application cluster, a
database server, and attached storage array. All the services are connected
via a 100Base-T switched Ethernet. The hardware resources together with
some relevant performance measures are listed in Table 9.1.

322 9 Client/Server Analysis with PDQ

9.3.1 Performance Scenarios

The objectives of the benchmark are to assess scalability of the application
prior to deployment. The primary performance criterion is that the 95th per-
centile of user response times for Web-based transactions should not exceed
500 ms.

The performance scenarios that we shall consider are:

• 100 client generators on the baseline benchmark platform (Sect. 9.4.1)
• 1,000 client generators predicted by PDQ (Sect. 9.4.2)
• 1,500 client generators predicted by PDQ (Sects. 9.4.3, 9.4.4, and 9.4.5)
• determine the client generator load at saturation (Sect. 9.4.6)

In reality, different load points can be chosen. The key idea is to predict many
points using PDQ, but only benchmark a few for validation. Using PDQ in this
way is intended to be more cost effective than reconfiguring the real platform
to measure each load point.

The various speeds and feeds of the benchmark platform are summarized in
Table 9.1 where CPU2000 refers to the integer SPEC CPU benchmark ratings
available online at www.spec.org. Arguably, the SPEC CPU2000 metric has
replaced the notion of nominal MIPS (cf. Sect. 7.3.5). With these assumptions

Table 9.1. Baseline benchmark configuration ratings

Node Number CPU2000 Ops/s MB/s

Desktop driver 100 499 – –
Load balancer 1 499 – –
Web server 2 – 400 –
Application cluster 1 792 – 4.00
Database server 1 479 – –
Disk arrays 4 – 250 5.72
100Base-T LAN 1 – – 0.40

in mind, we construct a baseline model in PDQ and then use it to predict
performance for a target level of 2,000 clients.

9.3.2 Workload Characterization

The same client application runs on all of the PC drivers, and it can ini-
tiate any of three transactions types with the mean request rates shown in
Table 9.1. These rates also determine the multiclass workload mix as dis-
cussed in Chap. 3. A business work unit is a high-level measure appropriate
for both business analysis and system-level performance analysis. For exam-
ple, the three transactions listed in Table 9.2 might be used to process claims

9.3 Benchmark Environment 323

Table 9.2. Client transactions

Transaction Prefix Rate
name symbol (per minute)

Category display CD 4
Remote quote RQ 8
Status update SU 1

at an insurance company. The number of claims processed each day is a quan-
tity that measures both business performance and computational performance
since it is also a measure of aggregate throughput.

The underlying distributed processes that support the three key transac-
tions in Table 9.2 are listed in Table 9.3. The prefixes in the process names
(first column) identify which transaction each process supports. The process
identification number (PID) can be obtained using performance tools such
as the unix ps -aux command. The third column shows how many kilo-
instructions are executed by each process. These numbers will be used to
calculate the process service demands. For compiled applications written in C
or C++, for example, the assembler instruction counts for each software com-
ponent of the application can be obtained from compiler output as outlined in
Example 9.1. For J2EE applications, other tools are available for determining
component service demands (see Appendix D). The last two columns of Ta-
ble 9.3 show I/O rates and caching effects that will also be used as parameters
in the PDQ model.

Example 9.1. To demonstrate how instruction counts in Table 9.3 can be ob-
tained, we took the source code for the C version of the baseline PDQ model
(baseline.c is included in the PDQ download) in Sect. 9.4.1 and compiled
it using gcc with the -S switch. The command is:

gcc -S baseline.c

This produced a corresponding file baseline.s containing assembler code
only. The unix wc command was then applied to that file to count the number
of assembler instructions (assuming 1 assembly code instruction per line).

wc -l baseline.c 477

wc -l baseline.s 1583

The latter number corresponds to the values appearing in the third column
of Table 9.3. The only difference is that each client/server component corre-
sponds not to 1.58 k-instructions, but to hundreds of k-instructions. ��

The service demand given in (2.9), defined in Chap. 2, can be derived
from Tables 9.1 and 9.3 for each type of workload by using a variant of the
iron law of performance in (7.9) in Chap. 7. The service demand for process
c executing on resource k is given by:

Dk(c) =
(instruction count)c

MIPSk
, (9.1)

324 9 Client/Server Analysis with PDQ

Table 9.3. Workload parameters for client/server processes

Process Process Assembler Disk Percent
name PID k-instructions I/Os cached

CD Request 1 200 0 0
CD Result 15 100 0 0
RQ Request 2 150 0 0
RQ Result 16 200 0 0
SU Request 3 300 0 0
SU Result 17 300 0 0

ReqCD Proc 4 500 1.0 50
ReqRQ Proc 5 700 1.5 50
ReqSU Proc 6 100 0.2 50
CDMsg Proc 12 350 1.0 50
RQMsg Proc 13 350 1.5 50
SUMsg Proc 14 350 0.5 50

DBCD Proc 8 5000 2.0 0
DBRQ Proc 9 1500 4.0 0
DBSU Proc 10 2000 1.0 0

LB Send 7 500 0 0
LB Recv 11 500 0 0

LAN Inst 18 4 0 0

where (instruction count)c refers to the number of executable instructions
belonging to workload c, and MIPSk is the throughput rating of hardware
resource k in mega instructions per second. Expressing (9.1) as thousands of
instructions per process and replacing MIPS by 106 instructions/s produces:

Dk(c) = (103 × instructions)c ×
(

seconds
106 × instructions

)
k

, (9.2)

which renders the service demand in units of milliseconds.
In the PDQ model baseline.pl presented in Sect. 9.4, the service demand

is represented by a two-dimensional array, denoted $demand[][], where the
first entry is a process and then second is a physical resource. The Category
Display process, for example, has a service demand defined by:

$demand[$CD_Req][$PC] = 200 * $K / $PC_MIPS;

when executing in the PC benchmark driver. Here, $K is a Perlscalar repre-
senting the constant 1024, and the scaler $PC MIPS represents the MIPS rating
of the PC driver.

9.3.3 Distributed Workflow

To build a useful performance model in PDQ, the flow of work between the
queueing nodes must be expressed in terms of the processes that support
the B2C transactions. For example, processing the CD transaction incurs the
following workflow:

9.4 Scalability Analysis with PDQ 325

1. A process on the PC driver (representing the user) issues a request
CD Request to the web sever. The web server Req CD in turn activates
a process App CD on the application server that propagates a request to
the database server DB CD.

2. The database server is activated by this request, some data are read, and
are sent back to the application server.

3. Upon receipt of the data, another Web server process updates the trans-
action status and routes the result back to the originating user. The user’s
display is then updated with the retrieved data.

The complete chain of processes and the hardware resources that support the
CD transaction are shown in Fig. 9.5. The right-pointing arrows represent

Desktop Web server App server

LAN Req_CD Req_CDCD_Req LAN

Request processing workflow

Response processing workflow

Database
server

DB_CD

CD_Res LANLAN CD_Msg

1 cycle

CD_Msg5 cycles

Fig. 9.5. The processing workflow required by the category display transaction

the client request being processed, while the left-pointing arrows represent
the response data being returned to the client process. The response arrows
are wider to reflect the fact that the database server issues multiple requests
to the application server in order return the necessary volume of data. The
CD transaction invokes five calls to the application server which are then
propagated back to the client process. This is similar to the situation in the
NFS timing chain discussed in Chap. 1.

As each process executes it consumes both CPU cycles and generates phys-
ical disk I/O. Table 9.3 summarizes the resource demands for each process, in-
cluding physical I/O. Knowledge of such detailed performance information—
including instruction traces and cached I/O rates—can be critical for mean-
ingful performance analysis of client/server applications.

9.4 Scalability Analysis with PDQ

We construct a baseline model with 100 desktops, which we then use to eval-
uate the impact of a 10-fold increase in users. The PDQ model (Fig. 9.6),

326 9 Client/Server Analysis with PDQ

Desktop
load

Load
balancer

Web
servers

Application
servers

Database
disk array

Database
server

100Base-T switch

Fig. 9.6. PDQ performance model of client/server system in Fig 9.4

called baseline.pl, is constructed as an open-circuit model. Although 100
users suggests there is a finite number of requests in the system and that
therefore a closed PDQ queueing model would be appropriate, we can use
the result of Sect. 2.8.7 to justify the use of an open PDQ model. Moreover,
in a Web or intranet environment requests can be submitted asynchronously
without waiting for the response to a previous request.

We also note, in passing, that the LAN is a shared resource and could be
modeled more accurately using a load-dependent PDQ queue (Chap. 10), but
we found that it did not appreciably alter our results.

9.4.1 Benchmark Baseline

The following Perlcode contains the PDQ model for the baseline system in
Fig. 9.6. We present the complete PDQ baseline model without reviewing the
corresponding PDQ output in this section. Instead, we review the certain PDQ
outputs for the upgrade scenarios in Sect. 9.3.1 while omitting the respective
PDQ scripts.

#!/usr/bin/perl

cs_baseline.pl

use pdq;

9.4 Scalability Analysis with PDQ 327

#--

PDQ model parameters

#--

$scenario = "Client/Server Baseline";

Useful constants

$K = 1024;

$MIPS = 1E6;

$USERS = 100;

$WEB_SERVS = 2;

$DB_DISKS = 4;

$PC_MIPS = 499 * $MIPS;

$AS_MIPS = 792 * $MIPS;

$LB_MIPS = 499 * $MIPS;

$DB_MIPS = 479 * $MIPS;

$LAN_RATE = 100 * 1E6;

$LAN_INST = 4;

$WEB_OPS = 400;

$DB_IOS = 250;

$MAXPROC = 20;

$MAXDEV = 50;

$PC = 0; # PC drivers

$FS = 1; # Application cluster

$GW = 2; # Load balancer

$MF = 3; # Database server

$TR = 4; # Network

$FDA = 10; # Web servers

$MDA = 20; # Database disks

Process PIDs

$CD_Req = 1;

$CD_Rpy = 15;

$RQ_Req = 2;

$RQ_Rpy = 16;

$SU_Req = 3;

$SU_Rpy = 17;

$Req_CD = 4;

$Req_RQ = 5;

$Req_SU = 6;

$CD_Msg = 12;

$RQ_Msg = 13;

$SU_Msg = 14;

$GT_Snd = 7;

$GT_Rcv = 11;

$MF_CD = 8;

$MF_RQ = 9;

328 9 Client/Server Analysis with PDQ

$MF_SU = 10;

$LAN_Tx = 18;

Initialize array data structures

for ($i = 0; $i < $WEB_SERVS; $i++) {

$FDarray[$i]->{id} = $FDA + $i;

$FDarray[$i]->{label} = sprintf("WebSvr%d", $i);

}

for ($i = 0; $i < $DB_DISKS; $i++) {

$MDarray[$i]->{id} = $MDA + $i;

$MDarray[$i]->{label} = sprintf("SCSI%d", $i);

}

$demand[$CD_Req][$PC] = 200 * $K / $PC_MIPS;

$demand[$CD_Rpy][$PC] = 100 * $K / $PC_MIPS;

$demand[$RQ_Req][$PC] = 150 * $K / $PC_MIPS;

$demand[$RQ_Rpy][$PC] = 200 * $K / $PC_MIPS;

$demand[$SU_Req][$PC] = 300 * $K / $PC_MIPS;

$demand[$SU_Rpy][$PC] = 300 * $K / $PC_MIPS;

$demand[$Req_CD][$FS] = 500 * $K / $AS_MIPS;

$demand[$Req_RQ][$FS] = 700 * $K / $AS_MIPS;

$demand[$Req_SU][$FS] = 100 * $K / $AS_MIPS;

$demand[$CD_Msg][$FS] = 350 * $K / $AS_MIPS;

$demand[$RQ_Msg][$FS] = 350 * $K / $AS_MIPS;

$demand[$SU_Msg][$FS] = 350 * $K / $AS_MIPS;

$demand[$GT_Snd][$GW] = 500 * $K / $LB_MIPS;

$demand[$GT_Rcv][$GW] = 500 * $K / $LB_MIPS;

$demand[$MF_CD][$MF] = 5000 * $K / $DB_MIPS;

$demand[$MF_RQ][$MF] = 1500 * $K / $DB_MIPS;

$demand[$MF_SU][$MF] = 2000 * $K / $DB_MIPS;

Packets generated at each of the following sources

$demand[$LAN_Tx][$PC] = 2 * $K * $LAN_INST / $LAN_RATE;

$demand[$LAN_Tx][$FS] = 2 * $K * $LAN_INST / $LAN_RATE;

$demand[$LAN_Tx][$GW] = 2 * $K * $LAN_INST / $LAN_RATE;

Parallel web servers

for ($i = 0; $i < $WEB_SERVS; $i++) {

$demand[$Req_CD][$FDarray[$i]->{id}] = (1.0 * 0.5 /

$WEB_OPS) / $WEB_SERVS;

$demand[$Req_RQ][$FDarray[$i]->{id}] = (1.5 * 0.5 /

$WEB_OPS) / $WEB_SERVS;

$demand[$Req_SU][$FDarray[$i]->{id}] = (0.2 * 0.5 /

$WEB_OPS) / $WEB_SERVS;

$demand[$CD_Msg][$FDarray[$i]->{id}] = (1.0 * 0.5 /

$WEB_OPS) / $WEB_SERVS;

9.4 Scalability Analysis with PDQ 329

$demand[$RQ_Msg][$FDarray[$i]->{id}] = (1.5 * 0.5 /

$WEB_OPS) / $WEB_SERVS;

$demand[$SU_Msg][$FDarray[$i]->{id}] = (0.5 * 0.5 /

$WEB_OPS) / $WEB_SERVS;

}

RDBMS disk arrays

for ($i = 0; $i < $DB_DISKS; $i++) {

$demand[$MF_CD][$MDarray[$i]->{id}] = (2.0 / $DB_IOS) /

$DB_DISKS;

$demand[$MF_RQ][$MDarray[$i]->{id}] = (4.0 / $DB_IOS) /

$DB_DISKS;

$demand[$MF_SU][$MDarray[$i]->{id}] = (1.0 / $DB_IOS) /

$DB_DISKS;

}

Start building the PDQ model

pdq::Init($scenario);

Define physical resources as queues

$nodes = pdq::CreateNode("PC", $pdq::CEN, $pdq::FCFS);

$nodes = pdq::CreateNode("LB", $pdq::CEN, $pdq::FCFS);

for ($i = 0; $i < $WEB_SERVS; $i++) {

$nodes = pdq::CreateNode($FDarray[$i]->{label},

$pdq::CEN, $pdq::FCFS);

}

$nodes = pdq::CreateNode("AS", $pdq::CEN, $pdq::FCFS);

$nodes = pdq::CreateNode("DB", $pdq::CEN, $pdq::FCFS);

for ($i = 0; $i < $DB_DISKS; $i++) {

$nodes = pdq::CreateNode($MDarray[$i]->{label}, $pdq::CEN,

$pdq::FCFS);

}

$nodes = pdq::CreateNode("LAN", $pdq::CEN, $pdq::FCFS);

Assign transaction names

$txCD = "CatDsply";

$txRQ = "RemQuote";

$txSU = "StatusUp";

$dumCD = "CDbkgnd ";

$dumRQ = "RQbkgnd ";

$dumSU = "SUbkgnd ";

Define focal PC load generator

$streams = pdq::CreateOpen($txCD, 1 * 4.0 / 60.0);

$streams = pdq::CreateOpen($txRQ, 1 * 8.0 / 60.0);

$streams = pdq::CreateOpen($txSU, 1 * 1.0 / 60.0);

Define the aggregate background workload

$streams = pdq::CreateOpen($dumCD, ($USERS - 1) * 4.0 / 60.0);

330 9 Client/Server Analysis with PDQ

$streams = pdq::CreateOpen($dumRQ, ($USERS - 1) * 8.0 / 60.0);

$streams = pdq::CreateOpen($dumSU, ($USERS - 1) * 1.0 / 60.0);

#--

CategoryDisplay request + reply chain from workflow diagram

#--

pdq::SetDemand("PC", $txCD,

$demand[$CD_Req][$PC] + (5 * $demand[$CD_Rpy][$PC]));

pdq::SetDemand("AS", $txCD,

$demand[$Req_CD][$FS] + (5 * $demand[$CD_Msg][$FS]));

pdq::SetDemand("AS", $dumCD,

$demand[$Req_CD][$FS] + (5 * $demand[$CD_Msg][$FS]));

for ($i = 0; $i < $WEB_SERVS; $i++) {

pdq::SetDemand($FDarray[$i]->{label}, $txCD,

$demand[$Req_CD][$FDarray[$i]->{id}] +

(5 * $demand[$CD_Msg][$FDarray[$i]->{id}]));

pdq::SetDemand($FDarray[$i]->{label}, $dumCD,

$demand[$Req_CD][$FDarray[$i]->{id}] +

(5 * $demand[$CD_Msg][$FDarray[$i]->{id}]));

}

pdq::SetDemand("LB", $txCD, $demand[$GT_Snd][$GW] +

(5 * $demand[$GT_Rcv][$GW]));

pdq::SetDemand("LB", $dumCD, $demand[$GT_Snd][$GW] +

(5 * $demand[$GT_Rcv][$GW]));

pdq::SetDemand("DB", $txCD, $demand[$MF_CD][$MF]);

pdq::SetDemand("DB", $dumCD, $demand[$MF_CD][$MF]);

for ($i = 0; $i < $DB_DISKS; $i++) {

pdq::SetDemand($MDarray[$i]->{label}, $txCD,

$demand[$MF_CD][$MDarray[$i]->{id}]);

pdq::SetDemand($MDarray[$i]->{label}, $dumCD,

$demand[$MF_CD][$MDarray[$i]->{id}]);

}

NOTE: Synchronous process execution causes data for the CD

transaction to cross the LAN 12 times as depicted in the

following parameterization of pdq::SetDemand.

pdq::SetDemand("LAN", $txCD,

(1 * $demand[$LAN_Tx][$PC]) + (1 * $demand[$LAN_Tx][$FS])

+ (5 * $demand[$LAN_Tx][$GW]) + (5 * $demand[$LAN_Tx][$FS]));

pdq::SetDemand("LAN", $dumCD,

(1 * $demand[$LAN_Tx][$PC]) + (1 * $demand[$LAN_Tx][$FS])

+ (5 * $demand[$LAN_Tx][$GW]) + (5 * $demand[$LAN_Tx][$FS]));

#--

RemoteQuote request + reply chain ...

#--

pdq::SetDemand("PC", $txRQ,

$demand[$RQ_Req][$PC] + (3 * $demand[$RQ_Rpy][$PC]));

pdq::SetDemand("AS", $txRQ,

$demand[$Req_RQ][$FS] + (3 * $demand[$RQ_Msg][$FS]));

9.4 Scalability Analysis with PDQ 331

pdq::SetDemand("AS", $dumRQ,

$demand[$Req_RQ][$FS] + (3 * $demand[$RQ_Msg][$FS]));

for ($i = 0; $i < $WEB_SERVS; $i++) {

pdq::SetDemand($FDarray[$i]->{label}, $txRQ,

$demand[$Req_RQ][$FDarray[$i]->{id}] +

(3 * $demand[$RQ_Msg][$FDarray[$i]->{id}]));

pdq::SetDemand($FDarray[$i]->{label}, $dumRQ,

$demand[$Req_RQ][$FDarray[$i]->{id}] +

(3 * $demand[$RQ_Msg][$FDarray[$i]->{id}]));

}

pdq::SetDemand("LB", $txRQ, $demand[$GT_Snd][$GW] +

(3 * $demand[$GT_Rcv][$GW]));

pdq::SetDemand("LB", $dumRQ, $demand[$GT_Snd][$GW] +

(3 * $demand[$GT_Rcv][$GW]));

pdq::SetDemand("DB", $txRQ, $demand[$MF_RQ][$MF]);

pdq::SetDemand("DB", $dumRQ, $demand[$MF_RQ][$MF]);

for ($i = 0; $i < $DB_DISKS; $i++) {

pdq::SetDemand($MDarray[$i]->{label}, $txRQ,

$demand[$MF_RQ][$MDarray[$i]->{id}]);

pdq::SetDemand($MDarray[$i]->{label}, $dumRQ,

$demand[$MF_RQ][$MDarray[$i]->{id}]);

}

pdq::SetDemand("LAN", $txRQ,

(1 * $demand[$LAN_Tx][$PC]) + (1 * $demand[$LAN_Tx][$FS])

+ (3 * $demand[$LAN_Tx][$GW]) + (3 * $demand[$LAN_Tx][$FS]));

pdq::SetDemand("LAN", $dumRQ,

(1 * $demand[$LAN_Tx][$PC]) + (1 * $demand[$LAN_Tx][$FS])

+ (3 * $demand[$LAN_Tx][$GW]) + (3 * $demand[$LAN_Tx][$FS]));

#--

StatusUpdate request + reply chain ...

#--

pdq::SetDemand("PC", $txSU, $demand[$SU_Req][$PC] +

$demand[$SU_Rpy][$PC]);

pdq::SetDemand("AS", $txSU, $demand[$Req_SU][$FS] +

$demand[$SU_Msg][$FS]);

pdq::SetDemand("AS", $dumSU, $demand[$Req_SU][$FS] +

$demand[$SU_Msg][$FS]);

for ($i = 0; $i < $WEB_SERVS; $i++) {

pdq::SetDemand($FDarray[$i]->{label}, $txSU,

$demand[$Req_SU][$FDarray[$i]->{id}] +

$demand[$SU_Msg][$FDarray[$i]->{id}]);

pdq::SetDemand($FDarray[$i]->{label}, $dumSU,

$demand[$Req_SU][$FDarray[$i]->{id}] +

$demand[$SU_Msg][$FDarray[$i]->{id}]);

}

pdq::SetDemand("LB", $txSU, $demand[$GT_Snd][$GW] +

$demand[$GT_Rcv][$GW]);

pdq::SetDemand("LB", $dumSU, $demand[$GT_Snd][$GW] +

332 9 Client/Server Analysis with PDQ

$demand[$GT_Rcv][$GW]);

pdq::SetDemand("DB", $txSU, $demand[$MF_SU][$MF]);

pdq::SetDemand("DB", $dumSU, $demand[$MF_SU][$MF]);

for ($i = 0; $i < $DB_DISKS; $i++) {

pdq::SetDemand($MDarray[$i]->{label}, $txSU,

$demand[$MF_SU][$MDarray[$i]->{id}]);

pdq::SetDemand($MDarray[$i]->{label}, $dumSU,

$demand[$MF_SU][$MDarray[$i]->{id}]);

}

pdq::SetDemand("LAN", $txSU,

(1 * $demand[$LAN_Tx][$PC]) + (1 * $demand[$LAN_Tx][$FS])

+ (1 * $demand[$LAN_Tx][$GW]) + (1 * $demand[$LAN_Tx][$FS]));

pdq::SetDemand("LAN", $dumSU,

(1 * $demand[$LAN_Tx][$PC]) + (1 * $demand[$LAN_Tx][$FS])

+ (1 * $demand[$LAN_Tx][$GW]) + (1 * $demand[$LAN_Tx][$FS]));

pdq::SetWUnit("Trans");

pdq::Solve($pdq::CANON);

pdq::Report();

A key point is the use of three PDQ streams to represent the three workloads
of interest, as well as three dummy streams to represent the other workloads
as background resource consumption.

The complete standard PDQ report produced by baseline.pl is ex-
tremely long (about 8 pages) and is not reproduced here. The reader can
find it in the PDQ code distribution available from www.perfdynamics.com.
A more compact approach to generating the full standard PDQ report is
to make use of PDQ functions like PDQ::GetResponse() (Sect. 6.6.9) and
PDQ::GetUtilization() (Sect. 6.6.12) to report individually the most im-
portant transaction response times and the node utilizations. An example
follows.

*** Resource Breakout "Client/Server Baseline" (100 clients) ***

Transaction Rmean R80th R90th R95th

----------- ----- ----- ----- -----

CatDsply 0.0431 0.0718 0.1005 0.1292

RemQuote 0.0393 0.0655 0.0917 0.1180

StatusUp 0.0152 0.0253 0.0354 0.0455

CDbkgnd 0.0416 0.0694 0.0971 0.1248

RQbkgnd 0.0378 0.0630 0.0882 0.1133

SUbkgnd 0.0139 0.0232 0.0325 0.0418

PDQ Node % Busy

-------- -------

100Base-T LAN 1.5838

PC Driver 0.0003

Appln Server 5.0532

9.4 Scalability Analysis with PDQ 333

Web Server10 7.5729

Web Server11 7.5729

Balancer CPU 12.2812

Database CPU 12.1141

SCSI Array20 6.8333

SCSI Array21 6.8333

SCSI Array22 6.8333

SCSI Array23 6.8333

This breakout of PDQ performance metrics has also made use of the rules
of thumb for the 80th, 90th and 95th percentiles discussed in Sect. 1.5.2 of
Chap. 1:

1. 80th percentile is R80th = 5 * PDQ::GetResponse() / 3;
2. 90th percentile is R90th = 7 * PDQ::GetResponse() / 3;
3. 95th percentile is R95th = 9 * PDQ::GetResponse() / 3;

As expected, the mean response times Rmean are identical to those previously
reported in the SYSTEM Performance section of the standard PDQ report. It
can also be verified that they are the respective sums of the residence times
listed in the RESOURCE Performance section of the PDQ report. Figure 9.7
shows that each of the baseline transaction response times are well within the
SLA requirements.

The consumption of hardware resources by the aggregate of the three
transactions follows the response time statistics in the breakout report, but
these numbers are total utilizations that are useful for bottleneck ranking.
Alternatively, we can identify which transaction is consuming the most re-
sources at any PDQ node by referring to the RESOURCE Performance section
of the standard PDQ report. This information will be useful in the subsequent
sections as we apply more client load to the PDQ model. The PDQ baseline
model should be validated against measurements on the actual benchmark
platform with end-to-end response time statistics compared. The next step is
to scale up the client load to 1,000 users.

9.4.2 Client Scaleup

To assess the impact of scaling up the number of user to 1,000 clients in
PDQ is simply a matter of changing the $USERS parameter (line 16) in the
cs baseline.pl model. However, it is better practice to copy the original
cs baseline.pl file to another file, e.g., cs scaleup.pl and make the edits
to that version.

If you persist in making a succession of edits to the same PDQ model file, there
will inevitably come a point where you can no longer recall what the succession
of changes mean or what motivated them in the first place. The best practice is
to keep separate PDQ model files for each set of scenario parameters.

334 9 Client/Server Analysis with PDQ

A result of scaling the client load to 1,000 in cs scaleup.pl and running that
scenario is the following PDQ error message:

ERROR in model:" 122.81% (>100%)" at canonical():

Total utilization of node LB is 122.81% (>100%)

which tells us that the PDQ node LB representing the load balancer in Fig. 9.6
is oversaturated (ρ > 1). This would make the denominator in the response
time formula (2.35) negative, as well as render other calculations meaningless.
Therefore, PDQ does not attempt solve the model.

9.4.3 Load Balancer Bottleneck

The SPEC CPU2000 rating of the load balancer is 499 in Table 9.1. We
consider an upgrade scenario (line 21 in the PDQ Perlcode) where the load
balancer is replaced by a model that has a rating of 792 SPECint2000. The
parameter change is made in the file called cs upgrade1.pl but causes the
following PDQ error report when run:

ERROR in model:" 121.14% (>100%)" at canonical():

Total utilization of node DB is 121.14% (>100%)

which tells is that the PDQ node (DB) representing the database server in
Fig. 9.6 is over-saturated.

9.4.4 Database Server Bottleneck

The SPEC CPU2000 rating of the database server is 479 in Table 9.1. We
consider an upgrade scenario (line 22 in the PDQ Perlcode) where the database
server is replaced by a model which has a CPU rating of 792 SPECint2000.
The parameter change is made in the file called cs upgrade2.pl, which when
run produces the following performance report:

*** Resource Breakout "Client/Server Upgrade2" (1000 clients) ***

Transaction Rmean R80th R90th R95th

----------- ----- ----- ----- -----

CatDsply 0.0986 0.1643 0.2300 0.2958

RemQuote 0.1022 0.1704 0.2386 0.3067

StatusUp 0.0319 0.0532 0.0745 0.0958

CDbkgnd 0.0971 0.1619 0.2267 0.2914

RQbkgnd 0.1007 0.1678 0.2350 0.3021

SUbkgnd 0.0307 0.0512 0.0716 0.0921

9.4 Scalability Analysis with PDQ 335

PDQ Node % Busy

-------- -------

100Base-T LAN 15.8379

PC Driver 0.0000

Appln Server 50.5320

Web Server10 75.7292

Web Server11 75.7292

Balancer CPU 62.1776

Database CPU 72.8978

SCSI Array20 68.3333

SCSI Array21 68.3333

SCSI Array22 68.3333

SCSI Array23 68.3333

We see that at 1, 000 users, the mean and the 95th percentile response times
still do not exceed the 0.5000 s SLA requirement. The Web server, however,
is likely to become a bottleneck at production-level loads.

9.4.5 Production Client Load

We increment the client load to 1, 500 and make some additional parameter
changes (for reasons that lie outside the scope of this discussion) in the PDQ
file called cs upgrade3.pl:

1 #!/usr/bin/perl

2 #

3 ## cs_upgrade3.pl

4

5 use pdq;

6

7 ###

8 # PDQ model parameters

9 ###

10 $scenario = "Client/Server Upgrade3";

11

12 # Useful multipliers ...

13 $K = 1024;

14 $MIPS = 1E6;

15

16 $USERS = 1500;

17 $WEB_SERVS = (2 + 4);

18 $DB_DISKS = (4 + 1);

19 $PC_MIPS = (499 * MIPS);

20 $AS_MIPS = (792 * MIPS);

21 $LB_MIPS = (1056 * MIPS);

22 $DB_MIPS = (1244 * MIPS);

23 $LAN_RATE = (100 * Mbps);

336 9 Client/Server Analysis with PDQ

24 $LAN_INST = 4; # scale factor

25 $WS_OPS = 400; # Web server SPEC Web99 ops/sec

26 $MS_DKIOS = 250; # RDBMS SCSI IOs

The following performance report is produced:

*** Resource Breakout "Client/Server Upgrade3" (1500 clients) ***

Transaction Rmean R80th R90th R95th

----------- ----- ----- ----- -----

CatDsply 0.0948 0.1579 0.2211 0.2843

RemQuote 0.1233 0.2056 0.2878 0.3700

StatusUp 0.0364 0.0607 0.0850 0.1093

CDbkgnd 0.0933 0.1555 0.2178 0.2800

RQbkgnd 0.1218 0.2030 0.2842 0.3654

SUbkgnd 0.0352 0.0587 0.0822 0.1056

PDQ Node % Busy

-------- -------

100Base-T LAN 23.7568

PC Driver 0.0000

Appln Server 75.7980

Web Server10 37.8646

Web Server11 37.8646

Web Server12 37.8646

Web Server13 37.8646

Web Server14 37.8646

Web Server15 37.8646

Balancer CPU 70.3030

Database CPU 69.9678

SCSI Array20 82.0000

SCSI Array21 82.0000

SCSI Array22 82.0000

SCSI Array23 82.0000

SCSI Array24 82.0000

The impact of these upgrades on each of the response time metrics compared
to the baseline benchmark system is summarized in Fig. 9.7.
We see the SCSI disk array becoming the next bottleneck. With that in mind,
we consider the last of the scenario objectives in Sect. 9.3.1.

9.4.6 Saturation Client Load

Maintaining the same system parameters as those in Sect. 9.4.5, we adjust
the $USERS parameter to find where the PDQ model reaches saturation.

*** Resource Breakout "Client/Server Upgrade4" (1800 clients) ***

9.4 Scalability Analysis with PDQ 337

0

100

200

300

400

500

Base(100) Upgrd(1000) Upgrd(1500)

CatDsply

RemQuote

StatusUp

Fig. 9.7. Summary of the response time (ms) statistics for baseline client/server per-
formance together with two of the possible upgrade scenarios presented in Sect. 9.4

Transaction Rmean R80th R90th R95th

----------- ----- ----- ----- -----

CatDsply 0.5930 0.9883 1.3837 1.7790

RemQuote 1.0613 1.7689 2.4764 3.1840

StatusUp 0.2762 0.4603 0.6445 0.8286

CDbkgnd 0.5916 0.9859 1.3803 1.7747

RQbkgnd 1.0598 1.7663 2.4728 3.1794

SUbkgnd 0.2750 0.4583 0.6416 0.8249

PDQ Node % Busy

-------- -------

100Base-T LAN 28.5082

PC Driver 0.0000

Appln Server 90.9576

Web Server10 45.4375

Web Server11 45.4375

Web Server12 45.4375

Web Server13 45.4375

Web Server14 45.4375

Web Server15 45.4375

Balancer CPU 84.3636

Database CPU 83.9614

SCSI Array20 98.4000

338 9 Client/Server Analysis with PDQ

SCSI Array21 98.4000

SCSI Array22 98.4000

SCSI Array23 98.4000

SCSI Array24 98.4000

We determine that around 1, 800 users both the application servers and the
database disk arrays are nearing saturation, even with all of the previous
upgrades in place. And naturally, nearly every response time statistic grossly
exceeds the SLA objective. A comparison of all the response times (in ms) is
summarized in Fig. 9.8.

0

1000

2000

3000

4000

Base(100) Upgrd(1000) Upgrd(1500) Satn(1800)

CatDsply

RemQuote

StatusUp

Fig. 9.8. Response times (ms) including those predicted when the system reaches
saturation with 1,800 users

9.4.7 Per-Process Analysis

An analysis of the transaction times can also be carried out at the per-process
level by further inspection of the PDQ report. For example, the time taken
by the $CD Msg process can be assessed as follows.

Using any of the PDQ model files, a global search for the string CD Msg
reveals that it runs on both the application servers (AS) and the Web servers
(WS). That is also consistent with the process flows shown in Fig. 9.5. Without
loss of generality, we focus on the $CD Msg process executing on the applica-
tion server in the baseline configuration. Specifically, line 20 of baseline.rpt
states:

9.5 Review 339

20 CEN FCFS AS CatDsply TRANS 0.0029

which corresponds to a service demand of 2.9 ms for the $CD Msg process
running the application server. In the presence of contention from other work,
however, the residence time at the application server has become 3.1 ms for
the $CD Msg process, as indicated at line 196 of the PDQ report:

196 Residence Time AS CatDsply 0.0031 Sec

By the time we get to the production loads of Sect. 9.4.5 with 1500 users, this
time has grown to 12 ms:

205 Residence Time AS CatDsply 0.0120 Sec

In other words, the effective $CD Msg process stretch factor is 4 times the
baseline service demand due to increased queueing contention (waiting time).
The complete PDQ report for this scenario is not shown here but is available
for download from www.perfdynamics.com.

9.5 Review

In this chapter, we have seen how to apply PDQ to the performance analysis
of a multitier B2C client/server environment. A key point to note is that PDQ
can be used to predict the scalability of distributed software applications, not
just hardware as in Chap. 7. This is achieved by using the workflow analysis
of Sect. 9.3.3.

Another merit of the techniques presented in this chapter pertains to more
cost-effective benchmarking and load testing. The performance of many large-
scale benchmark configurations can be predicted using PDQ, and those results
only need be verified against a relatively sparse set of selected platform con-
figurations. PDQ offers another way to keep the cost of load testing and
benchmarking down.

Exercises

9.1. How do the predicted performance metrics change in the PDQ model
cs baseline.pl if there is just a single workload, rather than the two-class
workload discussed in this chapter?

9.2. How does the predicted performance outcome change in the PDQ model
cs upgrade4.pl if the ordering of the hardware components is reversed in the
Perlcode?

10

Web Application Analysis with PDQ

10.1 Introduction

In this chapter we examine the performance characteristics of the latest in-
novation in client/server technology—Web technology. Unlike the traditional
client/server systems discussed in Chap. 9, each Web client typically makes
high-frequency, short-term accesses to a relatively small number of servers.

First, we examine some elementary mistakes made in the course of tak-
ing Hypertext Transfer Protocol (HTTP) server performance measurements.
Based on the queueing theory of Chaps. 2 and 3 and PDQ, we uncover the
cause of these mistakes. Next, we analyze the performance a Web-based mid-
dleware architecture, which will require the introduction of two novel tech-
niques to calibrate PDQ against the available performance data:

1. the introduction of “dummy” PDQ nodes to account for unmeasured la-
tencies

2. a load-dependent PDQ node to account for the overdriven roll-off observed
in the throughput data

These two techniques are extemely important for constructing realistic PDQ
performance models. The reader might like to review the concept of load-
dependent servers presented in Chaps. 2 and 6.

10.2 HTTP Protocol

The HTTP is a Web protocol that uses the TCP/IP Internet transport pro-
tocol. The files are usually resident on remote file servers distributed across
the internet. The protocol model is very simple. A client machine establishes
a connection to the remote server machine, then issues a request. The server
processes that request, returns a response with the requested data, and gen-
erally closes the connection.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4_10, © Springer-Verlag Berlin Heidelberg 2005

342 10 Web Application Analysis with PDQ

The request format in HTTP GET is straightforward, as the following ex-
ample Perlcode, which uses the powerful LWP (Library for WWW access in
Perl) module, demonstrates:

1 #! /usr/bin/perl

2 #

3 # getHTML.pl - fetch HTML from a URL

4

5 use HTTP::Request::Common qw(GET);

6 use LWP::UserAgent;

7 use POSIX;

8

9 $url = "http://www.neilgunther.com/";

10

11 # Set up and issue the GET ...

12 my $ua = new LWP::UserAgent;

13 my $request = new HTTP::Request(’GET’,$url);

14 $request->content_type(’application/x-www-form-urlencoded’);

15 printf("%s\n", $request->as_string);

16

17 # Print the result ...

18 my $result = $ua->request($request);

19 if (!$result->is_success) { print $result->error_as_HTML; }

20 printf("%s\n", $result->as_string);

Issuing the HTTP GET (from line 11 to line 15 in the above) produces a
result like this:

1 GET http://www.neilgunther.com/

2 Content-Type: application/x-www-form-urlencoded

The first line in the result specifies an object (an HTML file in this case),
together with the name of an object to apply the method to. The most com-
monly used method is GET, which asks the server to send a copy of the object
to the client. The client can also send a series of optional headers in RFC-822
format. The most common headers are Accept, which informs the server of
object types that the client can accommodate, and User-Agent, which reveals
the implementation name of the client. The response from the remote server
starts at line 3 as follows:

3 HTTP/1.1 200 OK

4 Connection: close

5 Date: Thu, 29 Jan 2004 18:08:45 GMT

6 Accept-Ranges: bytes

7 ETag: "2ef26b7a1addc31:11a2b"

8 Server: Microsoft-IIS/5.0

9 Content-Length: 2419

10 Content-Location: http://www.neilgunther.com/index.html

11 Content-Type: text/html

10.2 HTTP Protocol 343

12 Content-Type: text/html;CHARSET=iso-8859-1

13 Last-Modified: Sat, 17 Jan 2004 16:53:48 GMT

14 Client-Date: Thu, 29 Jan 2004 18:07:40 GMT

15 Client-Response-Num: 1

16 Title: www.neilgunther.com

17 X-Meta-GENERATOR: Symantec Visual Page 1.0

18

19 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2//EN">

20 <HTML>

21

22 <HEAD>

23 <META NAME="GENERATOR" Content="Symantec Visual Page 1.0">

24 <META HTTP-EQUIV="Content-Type" CONTENT="text/html;CHARSET=iso-8859-1">

25 <TITLE>www.neilgunther.com</TITLE>

26 </HEAD>

27

28 <BODY BACKGROUND="imacs.jpg" BGCOLOR="#FFFFFF">

The HTML belonging to the actual Web page starts at line 20 in the above
output. The rest of the response, down to </HTML>, has been elided for brevity.

Responses start with a status line indicating which version of HTTP is run-
ning on the server together with a result code and an optional message. This
is followed by a series of optional object headers; the most important of these
are Content-Type, which describes the type of the object being returned, and
Content-Length, which indicates the length. The headers are terminated with
a blank line. The server sends any requested data, and drops the connection.
HTTP transfers exhibit a common access pattern. A client requests a hyper-
text page, then issues a sequence of requests to retrieve any icons (connected
by Web hyperlinks) referenced on the first HTML page. Once the client has
retrieved the icons, the user will typically select a hypertext link to follow.
Most often the referenced page is on the same server as the original HTML
page.

More detailed performance data reveal a timing chain for a typical HTTP
client/server request/response sequence. The Web request is to fetch an
HTML page comprising 1,668 B that include 42 lines of response headers
totaling about 1,130 B. Phase 1 involves setting up a three-way handshake
between client and server. The connect request is sent to the server’s HTTP
port. When TCP transfers a stream of data, it breaks the stream up into
smaller packets or segments. The size of each segment may vary up to a max-
imum segement size (MSS). The default MSS is 536 B. The remainder of the
transaction, together with timings, is summarized in Table 10.1.

Rather than having to wait for each packet to be acknowledged, TCP al-
lows a sender to issue new segments even though it may not have received ac-
knowledgments for the previous ones. To prevent the sender from overflowing
the receiving buffers, the receiver tells the sender how much data it is prepared
to accept without acknowledgments. This amount of data determines what is
known as the window size.

344 10 Web Application Analysis with PDQ

Table 10.1. Timing sequence for an HTML Web retrieval

Client Server Data Elapsed Delta
Phase action action (B/pkt) time (ms) time (ms)

1 SYN pkt ⇒ 0 0.00 0.00
2 ⇐ SYN-ACK 77.69 77.69

ACK+ reqdata1 ⇒ 536 79.89 2.20
3 ⇐ ACK(1) 350.79 270.90

reqdata2 ⇒ 536 350.92 0.13
reqdata3 74 351.04 0.12

4 ⇐ ACK(2,3)+data1 512 451.16 100.12
⇐ data2 512 454.73 3.57

ACK data ⇒ 1 454.92 0.19
⇐ data3 512 525.21 70.29
⇐ data4+close 316 527.46 2.25

ACK data ⇒ 1 527.55 0.09
5 close 528.76 1.21

⇐ ACK close 599.04 70.28

Although the window size informs the sender of the maximum amount of
unacknowledged data the receiver is prepared to let it have outstanding, the
receiver cannot know how much data the connecting networks are prepared
to carry. If the network is quite congested, sending a full window of data
will only aggravate congestion. The ideal transmission rate is one in which
acknowledgments and outgoing packets enter the network at the same rate.
TCP determines the best rate to use through a process called Slow Start.
Under Slow Start the sender calculates a second window of unacknowledged
segments known as the congestion window.

When a connection commences, a sender is only permitted to have a sin-
gle unacknowledged segment outstanding. For every segment that is acknowl-
edged without loss, the congestion window is incremented by 1. Conversely,
the window is decremented by 1 for every segment that is lost and times out.
The lifetimes of typical network connections are usually longer than the time
required to open up the congestion window under Slow Start. But HTTP
uses very short-lived connections and so the effect of Slow Start can have a
significant performance impact on both the client and the server.

Because the HTTP headers are longer than the MSS, the client TCP
must use two segments in phase 2. With the congestion window initialized
to 1 packet, there is a delay for the first segment to be acknowledged before
the second and third segments can be sent in phase 3. This adds an extra
round-trip delay (RTD) to the minimum transaction time. One the server side,
when it is ready to send the response it starts with a congestion window of 2
packets because the acknowledgement (ACK) it sent in phase 3 was counted
as a successful transmission so the window was incremented by 1. Although
its window is slightly open, it is still insufficient to send the entire response
without pausing. In phase 4, the server sends two segments for a combined

10.2 HTTP Protocol 345

payload of 1,024 B, but then waits to receive another ACK from the client
before it sends the final two segments in phase 5.

Since most Web pages are larger than 1,024 B, Slow Start in the server
typically adds at least one RTD to the total transaction time. Under HTTP
1.0, larger HTML files experienced several Slow Start-induced delays, until
the congestion window became as big as the receiver’s window. This antag-
onism between Slow Start and HTTP GETs has been with more persistent
connections under HTML 1.2.

From the performance data Table 10.1, we can calculate the average RTD
and network bandwidth. Using the timing information in phases 1 and 5, the
connection request and grant takes 77.69 ms and the closing sequence in Phase
5 takes 70.28 ms. The average of these two RTDs is about 74 ms.

RTD = 77.69 + 70.282 = 73.99 ms . (10.1)

The network bandwidth BW can be determined from Phase 4 where data2
returns 512 B in 3.57 ms. This gives:

BW =
512
3.57

= 143, 420 B/s , (10.2)

which is a minimum throughput of about 1.15 Mb/s (cf. T1 line speed of
1.544 Mb/s).

The most significant latencies occur in phases 3 and 4, which are both
due to processing time on the server. There is no direct measure of the server
processing time, but it can be estimated from the delay between issuing the
request (end phase 3) and the return of data (start of phase 4). This is about
100 ms, minus the RTD of 73.99 ms from (10.1). The calculated value is:

Tserv = 100.12− 73.99 = 26.13 ms . (10.3)

We can now use this estimate of the server processing time to calculate
the improved response time that would attend the use of a persistent TCP
connection. The total transaction time of nearly 530 ms includes the time for
opening a new connection for each request. By reusing an existing connection
the transaction time can be calculated as the sum of the following times:

1. the time to send the request: (536 × 2 + 74)/143.75 = 7.97 ms
2. from (10.1), the round trip time: 73.99 ms
3. from (10.3), server processing time: 26.13 ms
4. time to send the response: (512 × 3) + 316 + 1 + 1143.75 = 10.91 ms

for a total response time of 119.0 ms, or a 77% performance improvement.
The single request per connection can also cause problems for server scal-

ability because of the TIME WAIT state in TCP. When a server closes a TCP
connection it is required to keep information about that connection for some
time afterward, in case a delayed packet finally shows up and sabotages a

346 10 Web Application Analysis with PDQ

new incarnation of the connection. The recommended time to keep this infor-
mation is 240 s. Because of this persistence period, a server must leave some
amount of resources allocated for every connection closed in the past 4 min.
For a server under heavy load, thousands of control blocks can end up being
accumulated.

10.2.1 HTTP Performance

A major problem faced by Web site administrators is host configuration. Con-
figuring demons, file systems, memory, disk storage, and so on, to meet the
increasing demand imposed by a growing client community is ultimately a de-
cision that must be based on price and performance. That metric can only be
assessed accurately if appropriate performance measurement tools are avail-
able. Key performance issues include:

• file caching
• file system activity
• forking slaves
• memory consumption
• process activity
• network activity
• response time characteristics
• scalability of server/host
• throughput characteristics
• server configuration
• proxy/gateway capacity

Even though a client may receive the message: “ERROR: server not responding
...”, the Web host performance can still appear to be acceptable to the an-
alyst. There is no way to report connections that are not established.

High rates of opening and closing TCP/IP connections for long periods
are known to cause instabilities in the unix operating system. The available
HTTP demons track each connection to the server and keep varying amounts
of footprint information while a connection is being serviced. These time-
stamped data are kept in log files on the host system. Other tools can scan
these logs and pretty-print the data.

By examining these logs, the analyst can estimate the throughput in terms
of metrics such as connections per second (cps). But there is no way to syn-
chronously associate such Web-based metrics with resource consumption in
the host operating system. The classic approach to invoking service when a
client request arrives is to fork a copy of the service process for each request.

The alternative is to prefork a finite of server processes ahead of time,
usually at bootup. In the following, we shall make a comparative analysis of
preforking and fork-on-demand. A key issue is: what is the optimal number
of servers to prefork?

10.2 HTTP Protocol 347

10.2.2 HTTP Analysis Using PDQ

Network latency is taken to be small and not load-dependent, so that it is
simply included in service time at the demon. In a load-test environment,
this is a reasonable assumption. Figure 10.1 shows the PDQ model used to
represent the prefork configuration with the master demon modeled as a single
queueing center and the slave processes modeled as a multiserver queue (see
Chap. 2).

Clients

Master

Requests Responses

Slaves

Fig. 10.1. HTTP master and preforked slaves

Clients

Demon

Requests Responses

Forked
processes

Fig. 10.2. A fork-on-demand HTTP server

The fork-on-demand processes in Fig. 10.2 are modeled as a PDQ delay center
($ISRV) defined in Chap. 2.

#!/usr/bin/perl

httpd.pl

use pdq;

$clients = 5;

$smaster = 0.0109; #seconds

348 10 Web Application Analysis with PDQ

$sdemon = 0.0044; #seconds

$work = "homepage";

@slave = ("slave1", "slave2", "slave3", "slave4", "slave5",

"slave6", "slave7", "slave8", "slave9", "slave10",

"slave11", "slave12", "slave13", "slave14", "slave15",

"slave16");

pdq::Init("HTTPd Prefork");

$pdq::streams = pdq::CreateClosed($work, $pdq::TERM, $clients, 0.0);

$pdq::nodes = pdq::CreateNode("master", $pdq::CEN, $pdq::FCFS);

pdq::SetDemand("master", $work, $smaster);

$nslaves = @slave;

foreach $sname (@slave) {

$pdq::nodes = pdq::CreateNode($sname, $pdq::CEN, $pdq::FCFS);

pdq::SetDemand($sname, $work, $sdemon / $nslaves);

}

pdq::Solve($pdq::EXACT);

pdq::Report();

10.2.3 Fork-on-Demand Analysis

In the fork-on-demand case (Fig. 10.2), a single demon process (queue) feeds
requests to the servers modeled as delay centers because there can be as many
servers as requests in system. With Sdemon = 0.0165 s and Sslave = 0.0044 s the
throughput (measured in cps) and the corresponding response times (RTD)
are summarized in Table 10.2.

Table 10.2. Fork-on-demand model results

Clients Conn/s RTD (s)

1 47.8469 0.0209
2 58.9513 0.0339
3 60.4593 0.0496
4 60.5963 0.0660
5 60.6055 0.0825
6 60.6060 0.0990
7 60.6061 0.1155
8 60.6061 0.1320
9 60.6061 0.1485
10 60.6061 0.1650

These throughput data match the throughput measurements reported
by McGrath and Yeager [1996] for their National Center for Supercomput-

10.2 HTTP Protocol 349

ing Applications (NCSA) stress tests. The performance of Windows IIS Web
server is discussed in Friedman and Pentakalos [2002].

10.2.4 Prefork Analysis

In the pre-fork case, there is a single master process (queue) and up to m = 16
slaves (Fig. 10.1). If Smaster > Sslave then m > 1 slave is ineffective, since the
master is the bottleneck center. If instead we assume that Smaster < Sslave

there is no runtime overhead to fork processes.
The PDQ script httpd.pl with 5 clients and 16 forked processes with

Smaster = 0.0109 s and Sslave = 0.0044/16 s produces the following output:

1 ***************************************

2 ****** Pretty Damn Quick REPORT *******

3 ***************************************

4 *** of : Tue Jul 20 20:30:02 2004 ***

5 *** for: HTTPd Prefork ***

6 *** Ver: PDQ Analyzer v2.8 120803 ***

7 ***************************************

8 ***************************************

9

10 Queueing Circuit Totals:

11

12 Clients: 5.00

13 Streams: 1

14 Nodes: 17

15

16 WORKLOAD Parameters

17

18 Client Number Demand Thinktime

19 ---- ------ ------ ---------

20 homepage 5.00 0.0153 0.00

21

22 ***************************************

23 ****** PDQ Model OUTPUTS *******

24 ***************************************

25

26 Solution Method: EXACT

27

28 ****** SYSTEM Performance *******

29

30 Metric Value Unit

31 ----------------- ----- ----

32 Workload: "homepage"

33 Mean Throughput 91.7335 Job/Sec

34 Response Time 0.0545 Sec

35 Mean Concurrency 5.0000 Job

36 Stretch Factor 3.5625

37

350 10 Web Application Analysis with PDQ

38 Bounds Analysis:

39 Max Throughput 91.7431 Job/Sec

40 Min Response 0.0153 Sec

41 Max Demand 0.0109 Sec

42 Tot Demand 0.0153 Sec

43 Think time 0.0000 Sec

44 Optimal Clients 1.4037 Clients

The system throughput and response time appear on lines 33 and 34 respec-
tively. Note that the predicted optimal client load on line 44 is Nopt = 2 clients
(rounded up). A complete set of results for up to 10 clients is summarized in
Table 10.3.

Table 10.3. Preforking model results

Clients Conn/s RTD (s)

1 65.3595 0.0153
2 86.4138 0.0231
3 90.9434 0.0330
4 91.6474 0.0436
5 91.7335 0.0545
6 91.7423 0.0654
7 91.7431 0.0763
8 91.7431 0.0872
9 91.7431 0.0981
10 91.7431 0.1090

Once again, these throughput data match the NCSA measurements but the
NCSA measurements are likely flawed; this is a point we take up in more
detail in Sect. 10.3. The two sets of throughput data for each type of HTTP
server are shown together in Fig. 10.3. The corresponding response times are
shown in Fig. 10.4. Under the conditions of the load-test, the HTTP demon
(HTTPd) saturates beyond two client generators.

This performance model shows that throughput is bottlenecked by the
HTTPd, not the slave processes. The better throughput performance of pre-
forking is simply a consequence of the reduced overhead that ensues by not
having to fork a process for HTTP request. It is neither limited nor enhanced
by the number of preforked processes. Since the demon that is the bottleneck,
preforking more than a single slave has no impact on throughput.

This conclusion is true only for the NCSA stress test workload. The file size
is small, so the demon service time dominates. For larger files and files that
are not cached, the service time of the slaves should be larger than that of the
demon, in which case m > 1 slaves would contribute to further performance
improvements of the HTTPd. The predicted delays in Fig. 10.4 show that
the system is already above saturation, and climbing the linear “hockey-stick
handle” discssed in Chap. 5.

10.2 HTTP Protocol 351

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Clients

C
on

ne
ct

io
ns

 p
er

 S
ec

on
d

Xprefork

Xpostfork

Fig. 10.3. Predicted HTTPd throughputs

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10

Clients

R
ou

nd
 T

rip
 T

im
e

Rprefork

Rpostfork

Fig. 10.4. Server response times corresponding to Fig. 10.3

Since the service demand at the demon is greater than the time to service
the stress test workload (request a 100-B file), the demon or master process is
the bottleneck process in both cases. Hence the throughput saturates immedi-
ately above two clients. The 50% improvement in throughput from preforking
is merely a reflection of the lower overhead in the demon process. The time
to pre-process the request is less with the preforking.

Preforking more than m = 1 slaves (Table 10.4) has no impact on through-
put (Fig. 10.5). This is only true for the stress test workload. There, the service
time to process the file descriptor is estimated at 4.5 ms. Requesting a typical

352 10 Web Application Analysis with PDQ

HTML page of about 1,000 B, does demonstrate the advantages of preforking
a finite number of slaves.

The following PDQ results show that for this workload:

• With m = 1, the overall throughput is much less than for the stress test.
This simply follows from the longer total processing time.

• More slaves improves throughput, even restores it to stress-test levels.
• More than m = 8 slaves is not very effective (in this simple model).

Table 10.4. HTTPd multislave throughput

Slave processes
Clients m = 1 m = 2 m = 4 m = 8 m = 16

1 24.45 24.45 24.45 24.45 24.45
2 30.39 36.49 40.56 42.96 44.27
3 32.30 43.58 51.90 56.99 59.80
4 32.96 48.21 60.24 67.54 71.42
5 33.20 51.44 66.58 75.33 79.61
6 33.28 53.80 71.50 80.95 84.98
7 33.32 55.58 75.39 84.87 88.23
8 33.33 56.98 78.50 87.52 90.04
9 33.33 58.09 81.02 89.23 90.97

10 33.33 58.99 83.06 90.30 91.41

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Clients

C
on

ne
ct

io
ns

 p
er

 S
ec

on
d

Fig. 10.5. HTTP server throughput

10.2 HTTP Protocol 353

The response times predicted by PDQ are shown in Table 10.5 and
Fig. 10.6.

Table 10.5. HTTPd multislave delay

Slave processes
Clients m = 1 m = 2 m = 4 m = 8 m = 16

1 0.0409 0.0409 0.0409 0.0409 0.0409
2 0.0658 0.0548 0.0493 0.0466 0.0452
3 0.0929 0.0688 0.0578 0.0526 0.0502
4 0.1214 0.0830 0.0664 0.0592 0.0560
5 0.1506 0.0972 0.0751 0.0664 0.0628
6 0.1803 0.1115 0.0839 0.0741 0.0706
7 0.2101 0.1259 0.0928 0.0825 0.0793
8 0.2400 0.1404 0.1019 0.0914 0.0889
9 0.2700 0.1549 0.1111 0.1009 0.0989

10 0.3000 0.1695 0.1204 0.1107 0.1094

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

1 2 3 4 5 6 7 8 9 10

Clients

R
ou

nd
 T

tip
 T

im
e

Fig. 10.6. Corresponding HTTP server response times

By way of contrast, the fork-on-demand model also shows improved
throughput performance under the heavier home page workload, but has lower
single-client performance due to the cost of a fork. Performance becomes throt-
tled at 60 cps above six clients in Fig. 10.7, whereas it was throttled at two
clients under the stress test. The corresponding round-trip delay times are
also plotted in Fig. 10.8.

354 10 Web Application Analysis with PDQ

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

Clients

C
on

ne
ct

io
ns

 p
er

 S
ec

on
d

Xpostfork

Xprefork

Fig. 10.7. Throughput comparisons

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1 2 3 4 5 6 7 8 9 10

Clients

R
ou

nd
 T

rip
 T

im
e

Rpostfork

Rprefork

Fig. 10.8. Round trip delay

Finally, it is worth noting some new tools that are available for assist-
ing in the performance analysis of Web servers. (Appendix D). In addition,
a number of Web server benchmarks are available. Among them are the
SPEC Web99 benchmark (www.spec.org/Web99/) and TPC-W (www.tpc.
org/information/benchmarks.asp). The SPECWeb99 benchmark is mod-
eled after the SPEC SFS client/server benchmark but has stricter rules of
engagement and a well-defined workload mix.

10.3 Two-Tier PDQ Model 355

As with all benchmarks, you need to be cautious about the representative-
ness of the workload. A server that stores a large number of MPEG files will
have different access characteristics than one that stores smaller text files. The
file size and distribution can also skew benchmark results and performance in
general. Moreover, the performance metrics used may be misleading. In some
cases the throughput is measured as the number of TCP connections per sec-
ond. There can be a large variance (e.g., whether access requests are issued by
a human or a software robot). A better metric might be the average number
of successfully completed HTTP operations per second or the average number
of bytes transferred, combined with the average response time (a throughput
delay metric).

10.3 Two-Tier PDQ Model

The examples presented in the next three sections are intended to demonstrate
how real this effect can be in the context of performance analysis.

10.3.1 Data and Information Are Not the Same

The following examples are intended to demonstrate what can go wrong with
load test measurements if the tester has no conceptual framework of the type
discussed in Chap. 5. In the vernacular, “Data is not information.” A con-
ceptual framework acts like a tool for sifting through the generated data.
Informational nuggets are embedded in the data, and tools like PDQ offer a
way to pan for informational gold.

10.3.2 HTTPd Performance Measurements

Compare the following load test measurements made on a variety of HTTP
demons [McGrath and Yeager 1996]. Figure 10.9 shows the measured through-
put data. They exhibit the generally expected throughput characteristic for a
system with a finite number of requests as discussed in Sect. 2.8.1 of Chap. 2.

The slightly odd feature in this case is the fact that the HTTP servers
appear to saturate rapidly for loads between two and four clients. Turning
next to Fig. 10.10, we see somewhat similar features in many of the curves.
Except for the bottom curve, the top three curves appear to saturate at N = 2
client generators, while the other one has a knee at four clients. Beyond the
knee it exhibits retrograde behavior; this is something we shall examine more
closely in Sect. 10.4.6.

But these are response time curves, not throughput curves, and this should
never happen! These data defy the queueing theory presented in Sect. 2.8.1 of
Chap. 2. Above saturation, the response time curves should start to climb up
a hockey stick handle with a slope determined by the bottleneck stage with
service demand Dmax.

356 10 Web Application Analysis with PDQ

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8

Clients

C
on

ne
ct

io
ns

 p
er

 s
ec

on
d

V1.3

CERN 3.0

V1.4, fork

Netsite

V1.4, pass

Fig. 10.9. Measured throughput for a suite of HTTPd servers

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0 1 2 3 4 5 6 7 8

Clients

M
ed

ia
n

R
T

T
 (

s)

V1.3

CERN 3.0

V1.4, fork

Netsite

V1.4, pass

Fig. 10.10. Measured response times of the same HTTPd servers in Fig. 10.9

10.4 Middleware Analysis Using PDQ 357

10.3.3 Java Performance Measurements

In their book on Java r©performance analysis, Wilson and Kesselman [2000,
pp. 6–7] refer to the classic convex response time characteristic of (Fig. 2.20)
in Chap. 2 as being undesirable for good scalability.

“(The equivalent of Fig. 2.20) isn’t scaling well because response time
is increasing exponentially with increasing user load.”

They define scalability rather narrowly as “the study of how systems perform
under heavy loads.” As we discussed in Chap. 8, this is not necessarily so. As
we have just seen in Sect. 10.3.2, saturation may set in with just a few active
users. Their conclusion is apparently keyed off the incorrect statement that
the response time is increasing “exponentially” with increasing user load. No
other evidence is provided to support this claim.

Not only is the response time not rising exponentially, the application
may be scaling as well as it can on that platform. We know from Chap. 5 that
saturation is to be expected and from (5.14) that the growth above saturation
is linear, not exponential. Moreover, such behavior does not by itself imply
poor scalability. Indeed, we saw in Fig. 5.12 of Chap. 5 that the response
time curve may rise superlinearly in the presence of thrashing effects, but this
special case is not discussed either.

These authors then go on to claim that a (strange) response time charac-
teristic like that shown in Fig. 10.10 is more desirable.

“(The equivalent of Fig. 10.10) scales in a more desirable manner
because response time degradation is more gradual with increasing
user load.”

Assuming the authors did not mislabel their own plots (and their text indicates
that they did not), they have failed to comprehend that the flattening effect is
most likely caused by throttling due to a limit on the number of threads that
the client can execute (as we discuss in the next section) or the inability of
the server to keep up with requests or related behavior. Whatever the precise
cause, any constancy or sublinearity in the response time characteristic above
saturation is a signal that the measurement system has a flaw. It can never
mean that the application is exhibiting a desirable scalability characteristic.
It may be desirable but it is not realistic.

10.4 Middleware Analysis Using PDQ

The right approach to analyzing sublinear response times is presented by Buch
and Pentkovski [2001] while using the Web Application Stress (WAS) tool,
which can be downloaded from Microsoft’s Web site www.microsoft.com.
The context for their measurements is a three-tier (cf. Chap. 9) e-business
application comprising:

358 10 Web Application Analysis with PDQ

0

50

100

150

200

250

300

350

400

450

0 50 100 150 200 250 300 350 400

Client Threads (N)

T
hr

ou
gh

pu
t (

G
et

s
/ s

)

Fig. 10.11. Measured middleware throughput

1. Web services
2. application services
3. database backend

In the subsequent sections we use the reported measurements to construct
a PDQ model of this e-business application. The measured throughput in

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350 400

Client Threads (N)

R
es

po
ns

e
Ti

m
e

(m
s)

Fig. 10.12. Measured middleware response time

Fig. 10.11 exhibits saturation in the range 100 < Nwas < 150 clients. The

10.4 Middleware Analysis Using PDQ 359

corresponding response time data in Fig. 10.12 exhibit sublinear behavior of
the type discussed in Sects. 10.3.2 and 10.3.3.

10.4.1 Active Client Threads

In Table 10.6 Nwas is the number of client threads that are assumed to be
running. The number of threads that are actually executing can be determined
from the WAS data using Little’s law given by (2.14) in the form Nrun =
Xwas × Rwas. We see immediately in the fourth column of Table 10.6 that no

Table 10.6. The number of running and idle client threads

Client System Response Running Idle
threads throughput time threads threads
Nwas Xwas Rwas Nrun Nidle

1 24 40 0.96 0.04
5 48 102 4.90 0.10

10 99 100 9.90 0.10
20 189 104 19.66 0.34
40 292 135 39.42 0.58
60 344 171 58.82 1.18
80 398 198 78.80 1.20

120 423 276 116.75 3.25
200 428 279 119.41 80.59
300 420 285 119.70 180.30
400 423 293 123.94 276.06

more than 120 threads (shown in bold) are ever actually running (Fig. 10.13)
on the client CPU even though up to 400 client processes have been requested.
In fact there are Nidle = Nwas − Nrun threads that remain idle in the pool.
This throttling by the client thread pool shows up in the response data of
Fig. 10.12 and also accounts for the sublinearity discussed in Sects. 10.3.2
and 10.3.3.

10.4.2 Load Test Results

The key load test measurements in Buch and Pentkovski [2001] are sum-
marized in Table 10.7. Unfortunately, the data are not presented in equal
user-load increments, which is less than ideal for proper performance anal-
ysis. Both Xwas and Rwas are system metrics reported from the client-side.
The utilizations was obtained separately from performance monitors on each
of the local servers. The average think-time in the WAS tool was set to Z = 0.
The Microsoft IIS Web server was also known to be a serious bottleneck.

360 10 Web Application Analysis with PDQ

0

20

40

60

80

100

120

140

0 100 200 300 400

Offered Load (N)

A
ct

iv
e

Lo
ad

 (
X

R
)

Fig. 10.13. Plot of Nrun determined by applying Little’s law to the data in Ta-
ble 10.6

Table 10.7. Measured performance data for the middleware application

N Xwas Rwas Uws Uas Udb

(GPS) (ms) (%) (%) (%)

1 24 39 21 8 4
2 48 39 41 13 5
4 85 44 74 20 5
7 100 67 95 23 5

10 99 99 96 22 6
20 94 210 97 22 6

10.4.3 Derived Service Demands

The measured utilizations and throughputs can be used together with the
microscopic version of Little’s law given by (2.15) to calculate the service
demands for each application service in Table 10.8.

The average of the derived values (the last row in Table 10.8) can be used
to parameterize the PDQ model.

10.4.4 Naive PDQ Model

As a first attempt to model the performance characteristics of the e-business
application in PDQ (see Fig. 10.14), we simply represent each application
service as a separate PDQ node with the respective service demand determined
from Table 10.8 as shown in the following PDQ code fragment:

PDQ::Init(model);

$pdq::streams = PDQ::CreateClosed($work, $pdq::TERM, $users, $think);

10.4 Middleware Analysis Using PDQ 361

Table 10.8. Derived service demands for the middleware application for each client
load. The last row shows the average service demand for each middleware PDQ
queueing center in Fig. 10.14

N Dws Das Ddb

1 0.0088 0.0021 0.0019
2 0.0085 0.0033 0.0012
4 0.0087 0.0045 0.0007
7 0.0095 0.0034 0.0005

10 0.0097 0.0022 0.0006
20 0.0103 0.0010 0.0006

0.0093 0.0028 0.0009

Dws Das Ddb

N clients
Z = 0 ms

Web Server App Server DBMS Server

Requests Responses

Fig. 10.14. Naive PDQ model

...

Create a queue for each of the three tiers

$pdq::nodes = PDQ::CreateNode($node1, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = PDQ::CreateNode($node2, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = PDQ::CreateNode($node3, $pdq::CEN, $pdq::FCFS);

...

Set service demands (in seconds)

PDQ::SetDemand($node1, $work, 0.0093);

PDQ::SetDemand($node2, $work, 0.0028);

PDQ::SetDemand($node3, $work, 0.0009);

The Perlcode for the complete model follows:

#!/usr/bin/perl

ebiz.pl

use pdq;

$model = "Middleware";

$work = "eBiz-tx";

$node1 = "WebServer";

362 10 Web Application Analysis with PDQ

$node2 = "AppServer";

$node3 = "DBMServer";

$think = 0.0 * 1e-3; # treat as free param

Add dummy node names here

$node4 = "DummySvr";

$users = 10;

pdq::Init($model);

$pdq::streams = pdq::CreateClosed($work, $pdq::TERM, $users, $think);

$pdq::nodes = pdq::CreateNode($node1, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($node2, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($node3, $pdq::CEN, $pdq::FCFS);

$pdq::nodes = pdq::CreateNode($node4, $pdq::CEN, $pdq::FCFS);

NOTE: timebase is seconds

pdq::SetDemand($node1, $work, 9.8 * 1e-3);

pdq::SetDemand($node2, $work, 2.5 * 1e-3);

pdq::SetDemand($node3, $work, 0.72 * 1e-3);

dummy (network) service demand

pdq::SetDemand($node4, $work, 9.8 * 1e-3);

pdq::Solve($pdq::EXACT);

pdq::Report();

As indicated in Fig. 10.15, this naive PDQ model has throughput that satu-
rates too quickly when compared with the WAS data, and similarly for the
response time in Fig. 10.16.

A simple method to offset this rapid saturation in the throughput is to
introduce a nonzero value to the think-time Z > 0:

$think = 28.0 * 1e-3; # free parameter
...
PDQ::Init(model);
$streams = PDQ::CreateClosed($work, $pdq::TERM, $users, $think);

In other words, the think-time is treated as a free parameter. This disagrees
with the measurements and settings in the actual load tests, but it can give
some perspective on how far away we are from finding an improved PDQ
model. As Fig. 10.17 shows, this nonzero think-time improves the throughput
profile quite dramatically. Similarly, the response time in Fig. 10.18 indicates
the development of a foot on the hockey stick handle.

This trick with the think time tells us that there are additional latencies
not accounted for in the load test measurements. The effect of the nonzero
think-time is to add latency and to make the round trip time of a request
longer than anticipated. This also has the effect of reducing the throughput

10.4 Middleware Analysis Using PDQ 363

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

T
hr

ou
gh

pu
t (

X
)

Xpdq

Xdat

Fig. 10.15. Naive PDQ model of middleware application throughput

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

R
es

po
ns

e
Ti

m
e

(R
)

Rdat

Rpdq

Fig. 10.16. Naive PDQ model of middleware application response time

364 10 Web Application Analysis with PDQ

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

T
hr

ou
gh

pu
t (

X
)

Xdat

Xpdq

Fig. 10.17. PDQ model of throughput with nonzero think-time

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

R
es

po
ns

e
Ti

m
e

(R
)

Rdat

Rpdq

Fig. 10.18. PDQ model of response time with nonzero think-time

10.4 Middleware Analysis Using PDQ 365

at low loads. But the think-time was set to zero in the actual measurements.
How can this paradox be resolved?

10.4.5 Adding Hidden Latencies in PDQ

The next trick is to add dummy nodes to the PDQ model in Fig. 10.19. There
are, however, constraints that must be satisfied by the service demands of
these virtual nodes. The service demand of each dummy node must be chosen
in such a way that it does not exceed the service demand of the bottleneck
node. In addition, the number of dummy nodes must be chosen such that the

Dws Das Ddb

N clients
Z = 0 ms

Web Server App Server DBMS Server

Requests Responses

Dummy Servers

Fig. 10.19. Hidden latencies modeled in PDQ by additional dummy nodes

sum of their respective service demands does not exceed Rmin = R(1) when
there is no contention, i.e., for a single request. It turns out that we can satisfy
all these constraints if we introduce 12 uniform dummy nodes, each with a
service demand of 2.2 ms. The change to the relevant PDQ code fragment is:

constant $MAXDUMMIES = 12;

$ddemand = 2.2 * 1e-3; # dummy demand

$think = 0.0 * 1e-3; # free parameter

Create the dummy nodes

for ($i = 0; $i < MAXDUMMIES; $i++) {

nodes = PDQ::CreateNode($dummy[i], CEN, FCFS);

PDQ::SetDemand($dummy[i], $work, $ddemand);

}

366 10 Web Application Analysis with PDQ

Notice that the think-time is now set back to zero. The results of this change to
the PDQ model are shown in Figs. 10.20 and 10.21. The throughput profile still

0

20

40

60

80

100

120

140

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

T
hr

ou
gh

pu
t (

X
)

Xdat

Xpdq

UXB

SXB

Fig. 10.20. PDQ model of throughput with dummy nodes

maintains a good fit at low loads but needs to be improved above saturation,
and similarly for the response time in Fig. 10.21.

10.4.6 Adding Overdriven Throughput in PDQ

Certain aspects of the physical system were not measured, and this makes
PDQ model validation difficult. So far, we have tried adjusting the workload
intensity by setting the think-time to a nonzero value. That removed the
rapid saturation, but the think-time was actually zero in the measurements.
Introducing the dummy queueing nodes into the PDQ model improved the
low-load model, but it does not accommodate the throughput roll-off observed
in the data. For this, we replace the Web service node in Fig. 10.22 with
a load-dependent node to represent the PDQ Web server node (WS). The
general approach to load-dependent servers was presented in Chaps. 3 and 6.
Here, we adopt a slightly simpler approach. The Web service demand (WS)
in Table 10.8 indicates that it is not constant. We need a way to express
this variability. If we plot the Web service demand in a spreadsheet such
as Microsoft Excel, we can do a statistical regression fit like that shown in
Fig. 10.23. The resulting power-law form is shown in (10.4).

Dws(N) = 8.3437 N0.0645 . (10.4)

10.4 Middleware Analysis Using PDQ 367

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

R
es

po
ns

e
Ti

m
e

(R
)

Rdat

Rpdq

SRB

URB

Fig. 10.21. PDQ model of response time with dummy nodes

Dws Das Ddb

N clients
Z = 0 ms

Load-dependent
Web Server

App Server DBMS Server

Requests Responses

Dummy Servers

Fig. 10.22. Overdriven throughput modeled in PDQ by a load-dependent Web
server node

368 10 Web Application Analysis with PDQ

y = 8.3437x0.0645

R2 = 0.8745

8

8.5

9

9.5

10

10.5

0 5 10 15 20

Clients (N)

S
er

vi
ce

 D
em

an
d

Data_Dws

8.0 N^{0.085}

Power (Data_Dws)

Fig. 10.23. Regression analysis of the load-dependent Web server demand

This result is quite good with a coefficient of determination value of R2 =
0.8745.

Dws(N) = 8.0000 N0.0850 . (10.5)

Nonetheless, a little manual tweaking leads to (10.5), which is introduced into
the PDQ model as:

for ($users = 1; $users <= $MAXUSERS; $users++) {

PDQ::SetDemand($node1, work,

8.0 * ($users ** 0.085) * 1e-3); # WS

PDQ::SetDemand($node2, $work, 3.12 * 1e-3); # AS

PDQ::SetDemand($node3, $work, 1.56 * 1e-3); # DB

The impact on the throughput model is seen in Fig. 10.24. The curve labeled
Xpdq2 is the predicted overdriven throughput based on (10.5). It fits well
within the error margins of the measured data. The hockey stick handle in
the response time characteristic of Fig. 10.25 is now appropriately superlinear.

10.4 Middleware Analysis Using PDQ 369

0

10

20

30

40

50

60

70

80

90

100

110

120

130

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

T
hr

ou
gh

pu
t (

X
)

Xdat

Xpdq1

UXB

SXB

Xpdq2

Fig. 10.24. PDQ model of overdriven throughput

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16 18 20

Clients (N)

R
es

po
ns

e
Ti

m
e

(R
)

Rdat

Rpdq1

SRB

URB

Rpdq2

Fig. 10.25. PDQ model of overdriven response time

370 10 Web Application Analysis with PDQ

10.5 Review

In this chapter we examined some elementary mistakes made in the course
of taking HTTPd performance measurements. Based on the queueing theory
of Chaps. 2 and 3, we constructed a PDQ model httpd.pl in Sect. 10.2.2
which uncovered the cause of sublinear response characteristics in otherwise
saturated servers as being due to client-side throttling.
Next, we constructed the PDQ model ebiz.pl of a Web-based middleware
architecture in Sect. 10.4.4. Calibrating the PDQ model to the load test mea-
surements required us to apply two important techniques:

1. the introduction of dummy PDQ nodes to account for un-measured laten-
cies

2. a simple load-dependent PDQ node to account for the overdriven roll-off
observed in the throughput data

These are likely to be among the most sophisticated techniques you will need
to use in constructing useful PDQ models.

Exercises

10.1. Run the Perlcode in Sect.10.2
(a) with the URL replaced by one of your own choosing.
(b) with GET replaced by POST.

10.2. Run the PDQ model in Sect. 10.4.6 with the alternative load-dependent
formula in Fig. 10.23. Discuss the differences.

Part III

Appendices

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

A

Glossary of Terms

In this chapter we collect a set of terms and acronyms that arise frequently in
the context of performance analysis. Not all the terms are used in this book.
Where they are used, a chapter reference is provided. In addition to the terms
defined here, there are a number of free online dictionaries and encyclopedias
that cover computing terminology. For example:

• Acronym Server: www.ucc.ie/cgi-bin/acronym
• Dictionary of Algorithms: www.nist.gov/dads/
• FOLDOC: wombat.doc.ic.ac.uk/
• Google: www.google.com
• High-Tech Dictionary: www.computeruser.com/resources/dictionary/

dictionary.html
• Vivisimo: vivisimo.com
• Webopedia: www.webopedia.com/Computer_Science/
• WhatIs: whatis.com
• Wikipedia: www.wikipedia.org/wiki/Computer_science

ACID Acronym for atomicity, consistency, isolation and durability. A desir-
able requirement for database transactions:
1. Atomicity: A transaction is an indivisible unit of work where all the

operations used to implement it either succeed or fail.
2. Consistency: A transaction must leave the system in a correct state

upon completion.
3. Isolation: The operation of any transaction is not affected by the op-

eration of any other.
4. Durability: The result of committing a transaction should be perma-

nent; up to and including system failures; also known as a persistent
transaction.

ANSI American National Standards Institute. US member body of OSI.
Analytic model A model is analytic if it can be expressed either as a math-

ematical equation or an algorithm, e.g., in Perl or Mathematica. The PDQ
models in this book are classed as analytic models.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

374 A Glossary of Terms

ANOVA Acronym for analysis of variance (sometimes ANOVAR). A formal
test of the hypothesis that the means of multiple sample distributions are
equal. Commonly applied to factorial experiments, where multiple factors
in a computer system are varied. Spreadsheet programs, like Microsoft
Excel, can do this for up to 2-factor experiments.

APPLMIB Extensions to the SNMP and MIB network protocol standards
to include application metrics.

AQRM Application Quality Resource Management, also known as Aquar-
ium. Emerging Open Group standard online at www.opengroup.org/
aquarium.

ARIMA Auto-regression integrated moving average.
ARM Application Response Measurement. Open Group standard available

online at www.opengroup.org/management/arm.htm
Availability The percentage of uptime during an observation period. Back-

of-the-Envelope Models Pencil and paper calculations based on guesses
and other rough estimates. Often a very powerful way to test results de-
rived from more sophisticated methods and tools such as simulations and
benchmarks.

B2B See Business-to-business.
B2C See Business-to-consumer.
Bandwidth The maximum possible or peak throughput of a resource. See

also Latency.
Batch means Used in simulation experiments. A more efficient method for

establishing confidence intervals than replication and run means. Effi-
ciency is achieved through eliminating the warm-up period by dividing
a single long run into a set of subruns or batches. The sample means from
these batches are then used to calculate a grand mean and the confidence
interval.

BCMP A set of rules that determine the applicability of the MVA technique
for solving queueing systems (see Chap. 3). The rules ensure the queueing
system is separable and has a product-form solution (see Chap. 2). An
acronym based on the names of the authors who developed the rules: F.
Baskett, K. Chandy, R. Muntz, and F. Palacios.

Benchmarks Stones: Dhrystones, Whetstones, etc. Can be optimized into
oblivion by clever compiler optimization techniques and are therefore
rendered less useful for commercial workload assessment.

Standard: Industry standard benchmarks like those developed by BAPCo,
SPEC, and TPC. Publicly defined workloads and requirements for the
presentation of benchmark results. These benchmarks are representa-
tive of certain classes relatively simple workloads. See Chap. 8.

Custom: Usually requires building a representative architecture and run-
ning code that represents a specific customer workloads.

BEP Back-end processor. See Chap. 7.

A Glossary of Terms 375

BPR Business process re-engineering. Any significant change in the way an
organization performs its business activities, often impacting software ap-
plications.

Browser A GUI-based application capable of rendering HTML and other
Web-based technologies, e.g., Macromedia Flash and Java.

BSS Block started by symbol. Memory allocated for uninitialized variables.
Appears in the output of some performance monitoring tools.

Business-to-business (B2B) Similar to be B2C, where the consumer is
another company or supplier. The transactions are generally more complex
and involve higher levels of security than B2C.

Business-to-consumer (B2C) Any retail business or organization that
sells its products or services to consumers over the Internet for their own
use. A well-known example is www.amazon.com. Today, online banking,
health and travel services, online auctions, and real estate sites are often
considered to be B2C. See also www.b2cbenchmarking.com.

BWU Business work unit. A high-level measure used in capacity planning.
A unit usually appropriate to both financial analysis and a coarse type
of performance analysis. For example, the number of claims processed
per day at an insurance carrier might involve several different database
transactions. The former is a BWU, while the latter are likely to be more
meaningful for performance analysis. Clearly, the BWU is also a measure
of throughput. See Chap. 9.

C2C See Consumer-to-consumer.
Capacity planning In the context of computer performance analysis it

refers to the planning of computer resources to insure that workload
service-level objectives (SLO) will be met. Tends to favor the use of an-
alytic and simulation models. Once calibrated, capacity planning models
should be tracked against future revisions of system software and hard-
ware.

Capture ratio The ratio of the total CPU-seconds accumulated by all pro-
cesses running on the CPU to the total CPU-seconds monitored by the
system during a particular sample interval. Ideally, the ratio should be 1,
but sampling is always susceptible to missing some short-lived processes.
See Appendix D.

Central Server Model The classic closed queue representation of a time-
share computer system in which all requests flow through a queueing
center representating the processor and then visit other queueing centers
(e.g., disks) returning either to the processor or delay centers representing
the users.

CERN An acronym for Conseil Europeen pour la Recherche Nucleaire, which
loosely translates as the European Agency for Nuclear Research. Based in
Geneva, Switzerland, CERN www.cern.ch is one of the major institutes
for high-energy particle physics research in Europe and the birthplace of
the Web.

376 A Glossary of Terms

CGI Common gateway interface. The a program (often written in Perl) that
enables access to an information repository and return the results as
HTML format.

CICS Customer information control system. IBM/MVA term. Essentially, a
transaction monitor.

CMG Computer Measurement Group (www.cmg.org). An organization for
professional performance analysts and capacity planners. The interna-
tional conference is held every December in the USA.

CMOS Complementary metal-oxide semiconductor. Refers to the dual p-
type/n-type implanting used to form the transistor switch. Compare with
NMOS.

COMA Cache only memory architecture. See also NUMA and Chap. 7.
Consumer-to-Consumer Person-to-person transactions such as those sup-

ported by Web-based auctions, e.g., www.ebay.com and some forms of
peer-to-peer transactions.

COW Copy on write. Cache update protocol. See Chap. 7.
CPAN Comprehensive Perl archive network. Online at www.cpan.org. A

large collection of Perlsoftware and documentation. Particularly relevant
for Chap. 6.

CRM Customer relationship management. Web-based software applications
that enable companies to manage every aspect of their relationship with
a customer.

DCE Distributed Computing Environment. Originated by Digital Equip-
ment Corporation, acquired by Hewlett-Packard, and now maintained by
Entegrity Solutions www.entegrity.com/products/dce/dce.shtml.

DNS Domain name service.
DSS Decision support system. Query intensive and often amenable to higher

degrees of parallelism than OLTP workloads. See Chap. 7.
DTS Digital time service. A network timing protocol developed by Digital

Equipment Corporation (now part of Hewlett-Packard).
Exa SI unit prefix for 1018. Approximately the number of memory bytes that

can be reached by 64-bit addressing = 1 million terabytes. See also tera
and peta.

False sharing Occurs when adjacent words in a cache line are modified by
different processors. The first occurrence of a write moves the line to that
processor’s cache and the next occurrence from another processor moves
the line to that processor’s cache. See Chap. 7.

FCFS First-come-first-served scheduling discipline at a queueing server. Equiv-
alent to FIFO. See Chap. 2.

FDDI Fiber distributed data interface.
FEP Front-end processor. See also BEP. See Chap. 7.
FTP File transfer protocol. See Chap. 10.
Gateway Multiple definitions:

• A network protocol converter.

A Glossary of Terms 377

• A networking term that was previously used for a router or other kind
of inter-networking device but this use is now deprecated. By this
definition, a router is a layer 3 (network layer) gateway, and a mail
gateway is a layer 7 (application layer) gateway.

• An interface between some external source of information and a World-
Wide Web server. Common Gateway Interface is a standard for such
interfaces. See Chap. 10.

GIF Graphic Interchange Format. Is it pronounced jiff or giff ? See www.
olsenhome.com/gif/ if you have nothing better to do. When you have
sorted that out, is it queueing or queuing?

GUI Graphical user interface. See Chap. 5.
HTML Hypertext Markup Language. The most common way to create Web

pages. See Chap. 10.
HTTP Hypertext Transfer Protocol. The protocol used to transfer files on

the Web. See Chap. 10.
HTTPd The demon that understands the HTTP protocol and provides the

corresponding services. See Chap. 10.
ICMP Internet Control Message Protocol. RFC 792. See Chap. 10.
IETF Internet Engineering Task Force. Oversight body for the development

of Internet protocols. See Chap. 10.
Internet Descendent of ARPANET comprising globally interconnected net-

works. See Chap. 10.
Intranet Private network that supports many of the same protocols as the

Internet. See Chap. 10.
IP Internet Protocol. RFC 781. See Chap. 10.
IPC Interprocess communication. See Chap. 9.
ISP Internet service provider. Usually a commercial operation that enables

individuals, organizations and companies to access the Internet. See
Chap. 10.

ISO International Organization for Standardization. Established in 1946.
J2EE Java 2 Platform, Enterprise Edition. Standard for developing component-

based multitier enterprise applications, including Web services support
and development tools.

Java A C++-like language that is supported by an interpreter (JVM) and
automatic garbage collection. Client-side Java applets can be executed in
a web browser.

Java applet A portable Java program that can be executed in a Java-
enabled Web browser.

Java bean A reusable software component in Java that supports all the
attributes of object-oriented programming as well as introspection, cus-
tomization, persistence, and interbean communication.

Java servlet A server-side Java applet.
JMX Java Management Extensions. A java-basd technology for building dis-

tributed instrumentation for managing and monitoring devices and appli-
cations.

378 A Glossary of Terms

JPEG Joint Photographic Experts Group. The name of the committee that
designed the standard image compression algorithm. JPEG is most ap-
propriate for compressing real-world scenes. It does not work so well on
nonrealistic images, and does not handle compression of black-and-white
(1-bit-per-pixel) images or moving pictures. Standards for compressing
those images include JBIG and MPEG.

JVM Java Virtual Machine.
LAN Local area network.
Latch A method for serializing database buffer accesses. Usually held for only

a short time of order of milliseconds.
LCFS Last-come-first-served scheduling discipline at a queueing server. Equiv-

alent to LIFO. The logical equivalent of a stack of plates in a cafeteria.
See Chap. 2.

LCFS-PR Last-come-first-served-preempt-resume scheduling at a queueing
server. Variation on LCFS where incoming request preempts the current
request in service but the preempted request resumes service immediately
afterwards. One of the permitted service disciplines in BCMP rules. See
Chap. 2.

LIFO Last-in-first-out scheduling discipline at a queueing center. Equivalent
to LCFS. See Chap. 2.

Load-dependent server A queueing center where the service rate is not
constant but is a function of the demand for services; usually characterized
by the queue length. See Chaps. 6 and 10.

MAC Media access control. Low level OSI data link interface to the physical
network layer.

Mathematica A powerful commercial symbolic computation system for do-
ing mathematics and mathematical modeling. See Chap. 2 and www.
wolfram.com for examples.

MIMD Multiple instruction multiple data. A form of parallel computation.
See Chap. 7, SIMD and SPMD.

MIPS Mega (106) instructions per second. A nominal measure of processor
throughput. Since the type of workload or instruction sequence is not
explicitly stated, more cynical interpretations abound. See also ETR and
ITR.

Mirror Multiple definitions:
1. Hardware. Writing duplicate data to more than one device (usually

a disk), in order to protect against loss of data in the event of de-
vice failure. This technique may be implemented in either hardware
(sharing a disk controller and cables) or in software. Some operating
systems support software disk mirroring. See also RAID.

2. Networking. An archive site which keeps a copy of some or all files at
another site so as to make them more quickly available to local users
and to reduce the load on the source site. Commonly used by Web
sites to minimize the performance impact on the Internet.

A Glossary of Terms 379

Model A noun, a verb and an adjective. One of the most over-worked words
in the English language:
• Fashion supermodel, e.g., Cindy Crawford.
• Financial spreadsheet.
• A mathematical equation.
• Classification of an automobile, e.g., GTO.
• Scaled mock-up with lots of working detail, e.g., a model railway.
• An explanation in physics or chemistry.
• Simple rules mimicking more complex system, e.g., the Game of Life

screen-saver.
• Computer model. See Analytic, Simulation, Back of the Envelope, and

Rule of Thumb definitions. There are many examples throughout this
book.

Moore’s Law VLSI transistor density doubles approximately every 18 months
or about 70% per annum.

MPEG Moving Picture Experts Group. An ISO committee that generates
standards for digital video compression and audio. Also the name of their
algorithm. MPEG-1 is optimized for CD-ROM. Variants under develop-
ment in Nov. 1994 are MPEG-2 for broadcast quality video and MPEG-4
for low bandwidth video telephony.

MPP Massively parallel processor.
MRTG Multirouter Traffic Grapher. See Appendix D.
Mutex Mutual exclusion lock. An operating system construct that allows

multiple threads to synchronise access to a shared resource. A mutex has
two states: locked and unlocked. Chaps. 6 and 7.

MUX Abbreviation for multiplexer. Combine several inputs into a single out-
put. Usually a hardware component.

MVS Multiple Virtual Storage. IBM mainframe operating system since re-
named z/OS.

NCSA National Center for Supercomputing Applications. Birthplace of the
Mosaic Web browser. See Chap. 10.

NFS Network file system. RFC 1094. A facility for mounting files across a
network of clients. See Chap. 5.

NTP Network Time Protocol. RFC 1305. See Chap. 1.
NUMA Nonuniform memory architecture. A method for improving mul-

tiprocessor scalability by partitioning memory across processing nodes
rather than have multiple processors access the same memory module.
Protocols like DASH, COMA and SCI are used to maintain coherency be-
tween memories. IBM/Sequent and SGI are based on variants of a NUMA
architecture. See Chap. 7.

OLTP Online transaction processing. Database accesses that involve updates
as well as queries. For a given response time criterion, throughput is the
key metric. Refers to the operational side of database usage. Compare
with DSS, and OLAP.

380 A Glossary of Terms

Open Group An international consortium of vendors whose purpose is to
define the to provide open systems applications portability. They also
own POSIX and the UMA performance measurement standards, among
others. Online at www.opengroup.org.

OSF Open Software Foundation. OSF owns Motif, DCE, and DME.
OSI Multiple definitions:

1. Open Systems Interconnection. Begat by ISO standards body.
2. Open Systems Initiative. Online at www.opensource.org.

P2P Refer to peer-to-peer.
PCMCIA Personal Computer Memory Card International Association. An

international trade association that has developed standards for devices,
such as modems and external hard disk drives, that can be plugged into
laptop computers. Online at www.pcmcia.org.

PDA Personal digital assistant. A small hand-held computer typically pro-
viding calendar, contacts, note-taking applications, and in some cases a
web browser. User input is provided by pens or small keyboards. More and
more of these devices are Internet ready. There is an ongoing convergence
between PDAs and cell phone functionality.

PDQ Pretty Damn Quick. The queueing circuit analyzer described in Chap. 6.
Download the PDQ source code from www.perfdynamics.com.

Peer-to-peer Network-connected architecture (commonly the Internet) where
clients and servers are indistinguishable or identical peers. Examples in-
clude the infamous music download services like www.napster.com and
www.kazaa.com.

Performance By Design The notion of doing performance analysis during
the design phase of a new product or architecture. Originally coined as
the subtitle for my first book [Gunther 2000a] Compare performance-by-
design with performance evaluation, or performance engineering, where
the performance analysis is done just prior to general availability (usually
too late).

Performance model For a computer system, the model is specifically built
to provide estimates of certain performance metrics such as throughput,
delay, and so on. See Model.

Perl Practical Extraction and Report Language. The language of PDQ used
to construct the performance models presented in this book. See Chap. 6
and www.perl.org. Related Perltools and source can be found on CPAN
at www.cpan.org.

Peta SI unit prefix for 1015. See also tera and exa.
Petri nets An extension to the idea of queueing systems that includes the

possibility of synchronization mechanisms which classical queueing theory
does not accommodate easily.

PHP Hypertext Preprocessor. A server-side, cross-platform, HTML-embedded
scripting language used to create dynamic web pages.

POSIX Portable Operating System Interface Exchange. A set of IEEE stan-
dards owned by the Open Group. Designed to provide application porta-

A Glossary of Terms 381

bility. IEEE-1003.1 defines a Unix-like operating system interface, 1003.2
the shell and utilities, and 1003.4 real-time extensions.

Power Processing power is defined for a queueing system by Power = ρS/R
where, ρ is the utilization, S is the mean service time in a p-processor
system, and R is the mean response time (Chap. 2). This metric is of-
ten used when discussing parallel processing efficiency (see Chap. 7). The
power metric combines two otherwise competing performance measures:
the utilization and the response time. Processor utilization can be in-
creased by reducing the number of physical processors (but at the cost of
increased response time). Conversely, R can be lowered at the expense of
processor efficiency. The power increases in either case.

Python An interpreted, interactive, object-oriented programming language
with many similarities to Perl and to Java. Online at www.python.org.
PDQ is also available in Python from www.perfdynamics.com/Tools/
PDQpython.html.

QNM Queueing network model. Not to be confused with a queueing model
of a data network. Called a queueing circuit in this book. A model that
contains more than one queueing center. In this collection of queueing
centers, work is serviced at one center and then proceeds to another center
before either returning to a delay center or leaving the system altogether.

QOS Quality of service. CCITTT Recommendation I.350 defines it as:
The collective effect of service performances which determine the
degree of satisfaction of a user of the specific service.

QOS metrics of interest include end-to-end delays and error rates.
RAID Redundant array of inexpensive disks. A cheaper form of high-

availability disk storage than mirroring. See Chap. 1.
RDBMS Relational Database Management System.
Reliability A measure of the occurrence of system failures. Formally defined

as the conditional probability that the system is up at time t, given that
it was already up at time t = 0. See Chap. 1 for more details.

RMF Resource measurement facility in the IBM/MVS operating system.
RPC Remote procedure call.
RPS Rotational position sensing. Disk terminology. Permits the use of the

SCSI bus or other transfer path to be utilized by other disks during the
rotational latency and seek time of the responding disk.

RSS Resident set size. Appears in some performance monitoring tools e.g.,
the unixtool called top.

RTD Round trip delay. The elapsed time measured from the time a request is
issued until the response (often in the form of data) is completed. Whether
the RTD refers to the time to complete sub-requests or the entire trans-
action (usually the response time) depends on the context. See also RTT.
See Chap. 10.

RTE Remote terminal emulator. Used to simulate actual users in workload
characterization studies and benchmarks.

RTT Round trip time. See RTD. See Chaps. 5 and 10.

382 A Glossary of Terms

Rule of thumb Configuration and sizing guidelines that have passed into
folklore. No one remembers why the rules work. Useful for estimating
performance limits but they are also subject to decay over time (rot?).
At some point they may not work because an undocumented assumption
(not captured in the rule) has changed. Examples:
• 50% of the I/Os go to 20% of the disks.
• CPU busy should never exceed 75%.

SAN Storage Area Networks.
SAR System Activity Reporter. A standard performance collection tool on

System V unixsystems.
SCI Scalable coherent interface. A type of bus architecture. IEEE standard.

Analogous to a directory-based token ring. See also NUMA.
SCSI Small computer systems interface. A highly ubiquitous disk interface.
SIMD Single instruction multiple data. A form of fine-grain parallelism. See

Chap. 7.
SLA Service level agreement. Customer-specified values of certain perfor-

mance metrics, such as throughput or response time, that must be met
by a platform vendor.

SLO Service level objective. Target performance level often specified in an
SLA.

SMP Symmetric multiprocessor. General purpose multiprocessor architec-
ture in which any of the CPUs can execute the workload concurrently.

SMF System management facility available under the IBM/MVS operating
system.

SMTP Simple Mail Transfer Protocol.
SNMP Simple Network Management Protocol. Used by all network man-

agement tools and a growing number of general performance management
tools. See Chap. 1.

Snooping Bus-based cache consistency protocol. Any number of caches can
simultaneously read a block of memory, but only one cache at a time is
permitted to write to that block. To determine their state with respect
to a write that may have occurred, each cache controller listens or snoops
on bus transactions and determines the appropriate coherency action.

SPEC System Performance Evaluation Corporation. Online at www.spec.
org. See Chap. 8.

SPMD Single program multiple data. A form of data-flow parallelism. See
also MIMD and SIMD.

Steady state The equilibrium state reached by a system after sufficient time
has allowed transient effects to dissipate.

Stretch Factor In PDQ, it is reported as the ratio of the system response
time under load to the system response time when it is uncontended (i.e.,
no queueing). At a single queueing center, the stretch factor is the ratio
R/S of the residence time R to the service time S.

SUT System under test.

A Glossary of Terms 383

TCP Transmission Control Protocol defined in RFC 793. A connection-based
packet protocol. Compare with UDP. See Chap. 10.

Test-and-set An atomic operation used to implement synchronization on
multiprocessors. A well-known performance problem relates to contend-
ing processors passing the lock between their respective caches thereby
increasing bus utilization. One way around this is to test the lock state
before applying the test-and-set primitive. Also known as test-and-test-
and-set.

Tera SI unit prefix for 1012. A single disk with a quarter terabyte capacity
can now be purchased for a few hundred dollars, so it is rapidly becoming
a commonplace form of personal storage for photos and home movies. See
exa and peta.

TPC Transaction Processing (Performance) Council. Responsible for the de-
velopment and oversight of industry standard database benchmarks. See
www.tpc.org. See Chap. 10.

TSP Time stamp protocol. See NTP and Chap. 1.
UDP User datagram protocol. Connectionless packet protocol defined in

RFC 768. Compare with TPC. See Chap. 9.
UI User interface. See also GUI and Appendix D.
UMA Universal Measurement Architecture. Open Group architectural spec-

ification for distributed performance data collection and monitoring.
Download from www.opengroup.org/products/publications/catalog/
c427.htm

UNIX Highly portable operating system developed at AT&T Bell Labora-
tories. The name comes from a whimsical reference to its predecessor, the
Multics operating system. See Appendix B.

URC Uniform resource citation. Web term. A data structure of attribute–
value pairs used to describe a Web files.

URI Uniform resource identifier. Web term. There are two types: URL (tran-
sient) and URN (persistent).

URL Uniform resource locator. A transient hyperlink to a Web file.
URN Uniform resource name. A persistent hyperlink to a Web file.
VM Virtual memory.
WAN Wide area network.
Write-back Cache coherency protocol. Also called a copy-back policy. A copy

is written back to main memory only if the cache line has to be replaced
or is marked dirty. Generally, has better performance and multiprocessor
scalability than the write-through protocol.

Write-through Cache coherency protocol. Each time a cache line is modified
it is also written to main memory. Generally, has poorer performance than
write-back.

XML Extensible markup language. Compare to HTML.
z/OS IBM mainframe operating system. See z/OS.

B

A Short History of Buffers

A buffer is a familiar form of temporary storage area in computer systems. It
was also pointed out in Chap. 2 that a buffer is an example of a queue—either
constrained or unconstrained. The unix history buffer is a familiar queue for
storing recently used shell commands. What is likely less familiar to many
readers is the history of queues.

With apologies to Stephen Hawking [1988] the following time line offers a
potted history of the development of queueing theory as it pertains to com-
puter performance analysis. It reflects the author’s personal bias by high-
lighting those events that are discussed in the main text. No attempt has
been made to be all inclusive.

1917 To paraphrase Pope’s couplet on Newton:

Queueing and queueing laws lay hid in wait;
God said, “Let Erlang be!” and all was great.

Agner Erlang [1917] publishes his seminal work where he develops the first
queueing models (see Sects. 2.7.1 and 2.7.3) to analyze the performance
of the Internet of his day—the telephone system.

Start of the 50-Year Gap
The Gap refers to the apparent fifty year hiatus between Erlang’s de-
velopment of queueing models in the context of analyzing teletraffic per-
formance in 1917 and the application of queueing theory to computer
performance analysis by Allan Scherr in 1967.

1930 Felix Pollaczek contributes to the PK formula for the M/G/1 queue
(2.118).

1932 Alexi Khintchine derives (2.118) for the M/G/1 queue. See Chap. 2.

1942 The first digital electronic computers begin to appear. John Atana-
soff and Clifford Berry test a full-scale prototype of the ABC computer

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

386 B A Short History of Buffers

at Iowa State University. See www.cs.iastate.edu/jva/jva-archive.
shtml.

1943 Alan Turing and colleagues build the Colossus to crack the German
enigma codes during World War II. Arguably, Colossus is not usually
considered to be a complete general-purpose computer.

1945 Presper Eckert, John Mauchly, and John von Neumann build the
ENIAC thermionic-tube digital computer at the University of Penn-
sylvania during World War II. In part, the motivation was antiaircraft
ballistics, which took into account the motion of the aircraft during
the time it took the shell to reach it; this was a form of operations
research.

1951 David Kendall invents his notation for queues. See Chap. 2.

1953 UNIVAC, the first electronic computer built for commercial appli-
cations.

The IBM 701 was designed exclusively for business data processing. It
was a vacuum tube computer programmed with punch cards. It would
still be another 15 years before anyone would apply queueing theory
to analyzing the performance of these new electronic beasts.

1955 Dennis Cox generalizes one of Erlang’s queueing concepts to the
case of heterogeneous service times and exit probabilities. See Sect. 2.11.8.

Circa 1955 Toyota Motor Corporation in Japan develops the Kanban
process for efficient inventory control of manufacturing systems. To-
day, this concept is more familiar as just in time or JIT processing.

1957 Jim Jackson’s paper is a significant development in queueing theory
because it was the first solvable instance of a circuit of queues, not
just a single queue. See Sect. 3.4.4.

1961 John Little proves the theorem that now bares his name in the full
context of stochastic queueing theory. See Sect. 2.5.

End of the 50-Year Gap

1967 Fifty years after Erlang’s teletraffic models, Allan Scherr [1967] presents
a closed queueing model of the CTSS and Multics [Saltzer and Gintell
1970] time-share computer system in his Ph.D. thesis. See Chap. 2 and
Sect. 3.9.1.

1967 Bill Gordon and Gordon Newell extended Jackson’s theorem to closed
queueing circuits.

B A Short History of Buffers 387

1973 Jeff Buzen introduces the convolution algorithm for solving closed cir-
cuits of queues.

1975 Forrest Baskett and colleagues write down the BCMP rules for applying
queueing theory to computer systems. See Sect. 3.8.2.

1976 Jeff Buzen introduces operational equations for Markovian queues. See
Chap. 2, Sect. 2.4.

1977 Pierre-Jacques Courtois introduces formal concepts of hierarchical de-
composition and aggregation for queueing models [Courtois 1985], [Bloch
et al. 1998, Chap. 4]. See Sect. 1.8.4 in Chap. 1 and 3.8 in Chap. 3.

1977 Ken Sevcik introduces the shadow server concept for analyzing non-
FIFO scheduling within the context of the MVA algorithm. See 3.9.3 in
Chap. 3 and Chap. 6.

1978 Peter Denning and Jeff Buzen extend their operational approach. One
result, the utilization law, is a special case of Little’s law. See Chap. 2.

1979 Paul Schweitzer introduces a fast, approximate algorithm for solving
closed queueing circuits with large N . See Sect. 3.5.3.

1980 Steve Lavenburg and Marty Reiser introduce the MVA algorithm for
solving multiclass closed circuits of queues.

1981 Ken Sevcik and Isi Mitrani introduce the Arrival Theorem, which en-
ables the MVA to be solved as an iterative algorithm. See Sect. 3.5.1 in
Chap. 3.

1982 Jeff Buzen’s company, BGS Inc., introduces their proprietary queueing
analyzer called BEST/1 aimed at IBM mainframes.

1982 Mani Chandy and Doug Neuse develop the Linearizer algorithm.

1982 Ed Lazowska, Ken Sevcik, and colleagues develop MAP (Mean value
Analysis Package), a semicommercial MVA solver written in FORTRAN.

1983 IBM Corporation introduces the proprietary queueing circuit solver
called RESQ (RESearch Queueing).

1984 Sperry introduces the Mean Value Approximation Package (MVAP), a
queuing network solver for Sperry 1100 Systems.

1986 Alan Weiss applies the mathematics of large deviations theory to the
problem of transients effects in network performance analysis. See [Schwartz
and Weiss 1995].

1987 Randy Nelson applies the mathematics of catastrophe theory to the
problem of bistable queueing in virtual memory computer systems and
the ALOHA packet networks. See Sect. 1.8.4 for more details.

388 B A Short History of Buffers

1988 The author reads Courtois [1985] and develops the Instanton method
(borrowed from quantum mechanics) to solve the same transient per-
formance problems as Randy Nelson and Alan Weiss. See Sect. 1.8.4,
and Gunther [1989, 2000a] for further details.

1989 The author studies phase transition effects in queueing models of
circuit-switched networks with dynamic routing [Gunther 1990].

1992 TeamQuest Corporation (a subsudiary of Sperry/Unisys) introduces
CMF.Models, a queueing network solver for Unisys 2200 mainframes.

1992 While at Pyramid Technology, the author develops the proprietary
queueing analyzer called ENQUIAR (ENterprise QUeueIng AnalyzeR).
Later, this would form the basis for PDQ.

1993 A group of researchers at Bellcore, looking into the possible impact
of ISDN on teletraffic, examine a multitude of IP packet traces captured
over a five-year period. They discover that some IP packet arrivals can be
autocorrelated over many decades of time (from milliseconds to hours).
These long-lived correlations are best described using power laws [Park
and Willinger 2000] rather than usual Poisson assumptions. This is one of
the most significant performance analysis results in the past decade.

1994 Ilkka Norros generalizes the M/M/1 queue length formula to accom-
modate non-Poisson power law effects:

Q =
ρ

1
2(1−H)

(1 − ρ)
H

1−H

,

where the Hurst parameter 0 < H < 1. The standard M/M/1 result
given in (2.36) corresponds to H = 0.5 while H = 0.9 is a better fit to the
Bellcore data [Park and Willinger 2000, Chap. 4].

1995 Ken Sevcik and Jerry Rolia develop the method of layers.

1997 Sun Microsystems introduces the HotSpot JIT byte-code compiler for
Java. (cf. Toyota’s Kanban approach to manufacturing in the 1950s).

1997 TeamQuest Corporation introduces TeamQuest Model for unix Sys-
tems, with proprietary iterative MVA approximation and simulation queu-
ing network solvers.

1998 The author releases the PDQ queueing analyzer as an open-source li-
brary written in C with the first edition of The Practical Performance
Analyst [Gunther 2000a].

2002 The author proves that Amdahl’s law is equivalent to synchronous
queueing in the repairman model. See Gunther [2002a] and Chap. 8.

2003 In an attempt to make PDQ more widely accessible to unix and Linux
system administrators (who are often tasked with doing impromptu per-

B A Short History of Buffers 389

formance analysis), the author and Peter Harding release an open-source
version of PDQ in Perland Python.

2003 Julie Stuart develops a new scheduling policy to increase the perfor-
mance of electronics recycling operations (see news.uns.purdue.edu/
UNS/html4ever/031013.Stuart.recycle.html). Similar to the Kanban
concept developed by Toyota in the 1950s (see above), the largest ob-
jects that can be disassembled quickly are moved from the staging area
first because it significantly reduces the amount of storage space needed.
Like JIT, will this algorithm also find its way into improved computer
performance?

As this chronology indicates, subsequent to Erlang [1917] the development of
queueing theory was not dormant but continued primarily within the context
of manufacturing systems and formal probability theory, rather than computer
and communication systems.

Today, the mathematical theory of queues is regarded as a subset of the
broader disciplines of operations research (a subject that had its origins in
the same wartime logistics that led to the development of the first electronic
computers) and applied probability theory. This synergy between the devel-
opment of queueing theory and the development of computer systems has led
to what we now refer to as computer performance analysis—the subject of
this book.

C

Thanks for No Memories

Throughout this book we use the Kendall queue notation introduced in
Chap. 2. In that notation the ‘M ’ in M/M/1 stands for either Markovian
(after the mathematician Andrei Andreevich Markov (1856–1922)) or memo-
ryless, and refers respectively to the probability distribution of the interarrival
and service periods. The terms Markovian and memoryless are used inter-
changeably. As we demonstrate in Sect. C.2, the only continuous probability
distribution that satisfies this memoryless property is the exponential distri-
bution discussed in Chap. 1. Here, we present a deeper explanation of this
important but counterintuitive statistical property in the context of queueing
theory.

C.1 Life in the Markov Lane

The memoryless property means that the past is no predictor of the future.
Like flipping a coin for a head, the fact that you have not produced a head in
the last five tosses does not increase or decrease your chances of producing a
head in the next toss. Coin tosses are statistically independent, and therefore
the past number of tails is no predictor of getting a head in the future. Coin
tossing is a memoryless process described by a geometric distribution—the
discrete counterpart of the exponential distribution. The appearance of a head
in coin tossing is analogous to the arrival of a customer at the grocery checkout.

Bumping into a doorway with your hip is another memoryless process.
Whether you bumped into a door last week or last year has no bearing on
your next door collision. The (continuous time) period between such bumps
could therefore be modeled accurately by an exponential distribution (See
Sect. C.2). On the other hand, having your hip surgically replaced is not
a memoryless process because the likelihood of developing arthritis in your
hip joint is strongly correlated with your age (but completely uncorrelated
with the number of door collisions). Statistically speaking, the longer you live
the more likely you are to need your hip replaced. Therefore, these periods

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

392 C Thanks for No Memories

would not be accurately modeled by an exponential distribution. This seems
intuitively reasonable.

Now, let us apply this notion to queues. Suppose you have been watching
a checkout lane at the grocery store (Sect. 2.3) for 30 s and there have been no
arrivals. Should you join it? Put more formally, is the likelihood of an arrival
in the next second greater or less than the likelihood during the past 30 s?
If the arrivals are Markovian, the likelihood remains the same. This does not
seem quite so intuitive. If you have already been watching the queue for 30 s
and there were no arrivals, surely the likelihood of a new arrival must now be
greater? Not so in the Markovian lane.

Let us turn to the service process. You decide to join that checkout
lane. How long will it take before you are served? From the Arrival theo-
rem (Sect. 3.5.1), your expected waiting time is determined by the number
of people waiting in line ahead of you plus the time for the customer already
being served. If the expected customer service time is 2 min and the customer
being served was already 1 min into their service time when you joined the
queue, will that not shorten your expected waiting time? Not in the Markovian
lane.

Although it seems counterintuitive, the remaining time before the next
arrival, and the residual time before the customer in service departs, are both
uncorrelated with your joining the queue. In the Markovian checkout lane or
M/M/1 queue, those remaining periods behave like the time to the next hip
bump (ageless) rather than the time to hip surgery (age-dependent). In a real
checkout lane, of course, your Markovian mileage may vary. See Sect. 2.11.10
for discussion about including the residual service time 1

2S(1 + C2
S) in an

M/G/1 queue.

C.2 Exponential Invariance

We now examine this memoryless property more formally. The intense inter-
est in the memoryless property stems from its making the mathematics of
queues soluble rather than realistic. The Markov checkout lane in Sect. C.1
seems counterintuitive because it does not agree with your perceptions of a
real grocery store and most real systems are correlated in time to some degree.
What is surprising, therefore, is that many real systems can be approximated
by a Markov process quite well; well enough to make queueing theory and
PDQ useful—otherwise, Erlang would have remained just be another tele-
phone engineer (Appendix B). How well the memoryless assumption applies
to your performance measurements must be determined experimentally (Ap-
pendix D).

The remainder of this Appendix assumes that you are familiar with in-
tegral calculus and probability theory. To demonstrate that the exponential
distribution is the only probability distribution that satisfies the memory-
less property, we first note that the time periods can be regarded as random

C.2 Exponential Invariance 393

variables. The conditional probability for two events A and B is defined as:

Pr(A | B) =
Pr(A ∩B)

Pr(B)
, (C.1)

Let the probability density function of X be (Sect. 1.5.2):

f(x) = λ e−λx , (C.2)

with corresponding probability distribution (CDF):

F (x) = 1 − e−λx, 0 ≤ x < ∞. (C.3)

The probability that a random variable X exceeds some value x is given by

Pr(X ≥ x) =
∫ ∞

x

f(x) dx = e−λx , (C.4)

and
Pr(a ≤ X ≤ b) = F (b) − F (a) = e−λa − e−λb , (C.5)

Suppose we have been observing a system and we know that an exponential
random variable X exceeds an age t = a in Fig. C.1 then X > a. We are
interested in the distribution of the remaining time which we associate with
another random variable Y = X − a.

The probability F (y | a) that Y ≤ y given X > a can be expressed in
terms of a conditional probability as:

F (y | a) = Pr(Y ≤ y | X > a)
= Pr((X − a) ≤ y | X > a)
= Pr(X ≤ (y + a) | X > a)

=
Pr(X ≤ (y + a) ∩ X > a)

Pr(X > a)
(from Eqn. C.1)

=
Pr(a < X ≤ (y + a))

Pr(X > a)
. (from Fig. C.1)

We can now calculate these probabilities as definite integrals between the
corresponding limits. Thus,

F (y | a) =

∫ y+a

a
f(x) dx∫ ∞

a
f(x) dx

(from Eqn. C.4)

=
e−λa (1 − e−λy)

e−λa
(from Eqn. C.2)

= 1 − e−λy .

Differentiating F (y | a) produces the conditional probability density:

f(y | a) = λ e−λy ≡ λ e−λ(x−a) , (C.6)

which is identical in form to (C.2), the distribution of the random variable X.

394 C Thanks for No Memories

C.3 Shape Preservation

The density function f(y | a) appears as the dashed curve in Fig. C.1 where,
without loss of generality, we have chosen a = 2. This is the same value as
the mean 1/λ in f(x). This function has a value of 1

2
at the origin, and that

corresponds identically to the value of f(y | a) at x = 2.

1 2 3 4 5
x

0.2

0.4

0.6

0.8

1

1.2 e (x- a)

e x

f(x)

Fig. C.1. Exponential density function f(x) = λe−λx and the conditional density
function f(y | a) = λe−λ(x−a) with a = 2

Moreover, if attention is confined to the area below the horizontal line
f = 1

2
, we see that the dashed curve f(y | a) replicates the original density

function f(x) but is shifted to the right along the x-axis by an amount a. The
mean is preserved in this right shift of the distribution since f(2) = f(4 | 2) =
1.35914. This shape preservation under arbitrary translations along the x-axis
is responsible for the memoryless property of the exponential distribution.

C.4 A Counterexample

If we try this procedure on any other distribution, the shape-preserving prop-
erty is lost. Consider, for example, the standard normal distribution (i.e.,
μ = 0 and σ2 = 1):

f(x) = (2π)−
1
2 e−

1
2x2

. (C.7)

The conditional probability distribution is given by:

F (y | a) =
erf[a/

√
2]− erf[(a + b)/

√
2]

erf[a/
√

2] − 1
, (C.8)

where erf[z] = 2π− 1
2
∫ z

0
e−t2dt is the error function. As before, differentiating

F (y | a) produces the conditional probability density:

C.4 A Counterexample 395

1 2 3 4
x

0.2

0.4

0.6

0.8

1

1.2

g(x)

f(x)

Fig. C.2. Normal density function f(x) = (2π)−
1
2 e−

1
2 x2

and the conditional density
function f(y | a) with a = 1

2

f(y|a) =
e−

1
2 x2√

2/π

erf[a/
√

2] − 1
. (C.9)

Both f(x) and f(y | a) are plotted in Fig. C.2, but we see immediately that,
unlike the exponential distribution in Fig. C.1, the shape of the original stan-
dard normal distribution is not preserved under x-translations.

D

Performance Measurements and Tools

This Appendix briefly summarizes some of the available measurement inter-
faces for collecting performance data as well as its presentation, storage, and
standardization.

D.1 Performance Counters and Objects

Performance data is sampled and typically stored temporarily into respective
counter locations. These locations are updated at the end of each sample
period. The counters may be kernel memory locations or more sophisticated
entities such as the performance object registry in the Microsoft Windowsr©
operating system [Friedman and Pentakalos 2002].

The content of these counters may be retrieved in various ways, such as
direct memory addressing, via an appropriate network MIBS schema, or by
traversing a data structure. Direct memory addressing is a brittle operation
since the locations will likely change across different releases of the kernel. This
problem can be ameliorated by interposing a data structure that references
the counters through pointer references. In unix systems a variety of such
performance data structures are available.

The Solaris r© interface to performance statistics in the kernel is called
kstat [Cockcroft and Pettit 1998, Musumeci and Loukides 2002]. The associ-
ated Perl module can be found at search.cpan.org/~aburlison/Solaris-0.
05a/Kstat/Kstat.pm. Similarly, AIX r© interface is called rstat (remote
kernels statistics). See publibn.boulder.ibm.com/doc_link/en_US/ a_doc_
lib/libs/basetrf2/rstat.htm.

D.2 Java Bytecode Instrumentation

Because Java runs on a virtual machine, performance data can be collected
from Java applications on the server side (e.g., J2EE) in a way that is different
from typical compiled applications.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

398 D Performance Measurements and Tools

Instrumentation of the Java bytecode [See e.g., Cohen and Chase 2001]
can be achieved by inserting special, short sequences of bytecode at desig-
nated points in the Java classes of an application. This facilitates runtime
analysis of instrumented classes, for profiling, and performance monitoring.
Static instrumentation of code can occur either during or after compilation.
Dynamic instrumentation, however, can only take place at runtime. A typical
way to perform runtime class instrumentation is through the preprocessing
mechanism in which profiling and monitoring tools use a class preprocessor
to insert instrumentation code at the required places in the Java classes just
prior to being loaded by the JVM.

Java Management Extensions (JMX) is a java-based technology for build-
ing distributed instrumentation for managing and monitoring devices and
applications. In addition, a number of other projects like:

• JikesBT at IBM www.alphaworks.ibm.com/tech/jikesbt
• BCEL - Open Source project jakarta.apache.org/bcel
• JBoss www.jboss.org

have evolved to enable Java bytecode instrumentation.

D.3 Generic Performance Tools

Generic performance analysis tools are resident on all the major computer
operating systems. For example, some variants of the unix operating sys-
tem have SAR (System Activity Reporter) [Peek et al. 1997, Musumeci
and Loukides 2002]. Most unix variants have vmstat (see sample output in
Figs. 2.7 and 5.13) while the Linux operating system also has the procinfo
command (Fig. D.1).

These tools display in ASCII characters and the format can vary across
different unix platforms. Microsoft Windows 2000 r© and XP r© both have a
graphically-based System Monitor [see e.g., Friedman and Pentakalos 2002].

A common limitation of most generic performance tools is that the met-
rics are not time-stamped. SAR is one exception among these older generic
tools. Most modern commercial performance management tools now do time-
stamping automatically. They support the performance monitoring phase dis-
cussed in Chap. 1 (see Fig. 1.1).

Mainframes, such as IBM platforms running z/OS r©, possess generic per-
formance monitoring facilities like RMF (Resource measurement facility) and
SMF (System management facility). The UMA standard mentioned in Sect. 1
was developed as the logical equivalent of RMF for unix systems.

D.4 Displaying Performance Metrics

The generic unix performance monitoring tools mentioned in Sect. D.3 present
performance statistics in formatted ASCII characters. Modern performance

D.4 Displaying Performance Metrics 399

Linux 2.4.22-1.2149.nptl (bhcompile@daffy) (gcc 3.2.3 20030422) #1 1CPU [pax]

Memory: Total Used Free Shared Buffers Cached
Mem: 514672 501928 12744 0 189932 83804

Swap: 594396 47704 546692

Bootup: Mon Jan 26 10:47:13 2004 Load average: 0.10 0.05 0.01 1/93 21142

user : 1d 1:40:40.16 6.4% page in : 2185526 disk 1: 45r 1w

nice : 0:01:56.80 0.0% page out: 17943250 disk 2: 287031r 2014488w
system: 16:19:44.16 4.0% swap in : 14061 disk 3: 17512r 131673w
idle : 15d 1:55:06.23 89.6% swap out: 32127 disk 4: 593r 523w
uptime: 16d 19:57:27.35 context :431330839

irq 0: 145424735 timer irq 8: 1 rtc
irq 1: 156715 keyboard irq 9: 19757050 eth0, eth1
irq 2: 0 cascade [4] irq 10: 12236 usb-uhci
irq 3: 14023393 serial irq 11: 5658 es1371

irq 4: 21183769 serial irq 12: 143313718 PS/2 Mouse
irq 6: 161 irq 14: 2437954 ide0
irq 7: 4818744 serial irq 15: 6405449 ide1

Fig. D.1. Output of the Linux procinfo command

monitoring tools have a graphical user interface (GUI), so the most common
visual presentation format is the strip chart (Fig. D.2).

Fig. D.2. Screenshot of an MRTG strip chart showing load average as a time series.
The intervals on the time axis are the reverse of normal convention (cf. Figs. 1.1
and D.3)

The astute reader will note that the multirouter traffic grapher (MRTG) plot
in Fig. D.2 has the time axis reversed with intervals decreasing from left
to right. Not only does this defy convention, but it is very likely to lead to
incorrect performance analysis. Remarkably, there are several examples of this
undesirable miscue on the MRTG Web page people.ee.ethz.ch/~oetiker/
webtools/mrtg/users.html.

Professional commercial performance management tools, e.g., TeamQuest
View r©, follow well established conventions regarding the time axis (Fig. D.3).
A more powerful visual alternative for displaying the time development of

400 D Performance Measurements and Tools

Fig. D.3. Screenshot of CPU utilization components showing how the intervals on
the time axis increase correctly from left to right in TeamQuest View (Used with
permission)

data is animation [Gunther 1992]. This observation motivated the suggested
animation of the load average metrics in Chap. 4.

The application of animation to analyzing data has been very successful in the
context of scientific visualization. Part of the reason for that success is that
physical data inherently belongs to (3 + 1)-dimensions: three spatial and one
temporal. Performance data, on the other hand, is inherently N -dimensional.
Consider the 300 or so performance metrics available in most unix and Win-
dows systems. To achieve performance visualization we need to find ways to
display a subset of that N -dimensional data on a 2-dimensional screen.

This is a hard problem and little is currently available to assist the per-
formance analyst along these lines. The central problem is to find the best
impedence match between the data being monitored on the digital computer
and its interpretation by the cognitive computer (primarily the visual cortex)
of the performance analyst. A lot is known about the former but a lot less is
known about the latter.

D.6 Performance Prediction Tools 401

D.5 Storing Performance Metrics

Having retrieved performance metrics from the respective counters or data
structures, the next issue is to store them for later review. This is the only
sensible way to search for patterns in the data that can aid the performance
analysis process. There are good ways and bad ways to do this.

Historically, SAR is stored in a binary format. This presents problems if
trying to display on a platform that is different from that where the data was
collected.

RRDtool (people.ee.ethz.ch/~oetiker/webtools/rrdtool) offers a par-
tial solution. RRD uses a round-robin database on top of MRTG (see Sect. D.4
about time ordering) to store and display simple data as a time-series. It can
display this data in graphical form. It can be used with simple wrapper scripts
(e.g., unix shell or Perl scripts) or via front-ends that poll network devices.
RRDtool is also the basis of the ORCA tool mentioned in Chap. 4. These
tools support the performance analysis phase in Fig. 1.1 of Chap. 1.

Commerical products such as, BMC Patrol 2000 r© (www.bmc.com), and
TeamQuest Performance Software r© (www.teamquest.com), store collected
monitored statistics in a sophisticated performance database, that can then
be queried to display selected subsets of relevant performance data in a time
range of interest.

D.6 Performance Prediction Tools

Having collected performance metrics on a scheduled (time-stamped) basis
and stored them in a performance database, those data can be used to con-
struct derived metrics of the type discussed in Chap. 2. Derived metrics can
be used to parameterize predictive tools, e.g., spreadsheets and queueing an-
alyzers like PDQ.

Table D.1. Partial list of vendors who offer commercial performance prediction
tools

Vendor Web site

Altaworks www.altaworks.com

BMC Software www.bmc.com

RadView www.radview.com

TeamQuest www.teamquest.com

This supports the performance prediction phase of the performance man-
agement process in Fig. 1.1 of Chap. 1. There are also large number of com-
mercial performance management tools available for doing performance pre-
diction (see Table D.1). One significant advantage that commercial analysis

402 D Performance Measurements and Tools

and prediction tools offer over PDQ is, they collect workload service times
(Chap. 2) and build the queueing models automatically.

D.7 How Accurate are Your Data?

In the rush to judge the accuracy of predictions made by performance tools like
PDQ, the question, How accurate is the measurement data? usually remains
unasked. All performance measurement comes with errors. Do you know how
big those errors are? There are many well-known statistical techniques for
determining measurement errors in performance data [see e.g., Lilja 2000],
but few people take the time to carry out the analysis.

A good example is aliasing errors in the measurement of CPU utilization
which can be as high as 80% [McCanne and Torek 1993]. This happens when
a task becomes synchronized by being sampled on the system clock boundary
(Chap. 1). For example, a task might execute in phase with the system clock
such that it relinquishes the CPU before the next clock interrupt occurs. In
this way, no CPU busy time is accumulated, giving rise to significant errors
at relatively low loads. Some platforms offer higher resolution clocking to
ameliorate this problem [see e.g., Cockcroft and Pettit 1998].

D.8 Are Your Data Poissonian?

One of the assumptions embedded in PDQ is that both interarrival and service
periods are distributed exponentially (Chaps. 1, 2 and 6). Only Poisson pro-
cesses can produce exponentially distributed periods. The question naturally
arises, how can you determine if your data are Poisson or not?

Erlang [1909] was the first to note that incoming telephone calls are expo-
nentially distributed and this led to the development of Markovian queues like
M/M/m discussed in Chap. 2. A commonly used statisitcal test for how well
data fits a particular distribution is the Chi-square goodness of fit test [Lilja
2000]. One drawback of this technique is that it is not very robust unless the
distribution you are fitting is discrete and you have a large number of sample
measurements.

A better test for fit to an exponential distribution is the Kolmogorov–
Smirnov (or K-S) test (NIST www.itl.nist.gov/div898/handbook/eda/
section3/eda35g.htm). It is particularly well suited to fitting a small num-
ber of sample measurements to a continuous distribution, like the exponential
distribution.

The comparison is made between the measured cumulative frequency Fn

and the cumulative distribution function Fo of the exponential distribution.
Both the positive and negative differences:

D+ = Fn − Fo (D.1)
D− = Fo − Fn−1 (D.2)

D.8 Are Your Data Poissonian? 403

are calculated. The key statistic is the quantity:

K = Dmax

√
N (D.3)

where Dmax is the largest of D+ and D−.

Table D.2. K–S parameters for exponential fit of ranked data

n Data Fo Fn Fn−1 D+ D−
1 1.43 0.1797 0.12 0.0000 -0.0577 0.1797
2 4.12 0.4348 0.35 0.1220 -0.0833 0.3128
3 7.58 0.6500 0.65 0.3515 -0.0033 0.2985
4 8.02 0.6707 0.68 0.6468 0.0136 0.0239
5 10.43 0.7642 0.89 0.6843 0.1258 0.0799
6 11.72 0.8027 1.00 0.8899 0.1973 -0.0872

Example D.1. Consider the following set of N = 6 service periods measure-
ments: 11.72, 10.43, 8.02, 7.58, 1.43, 4.12. The steps required to determine if
these data are exponentially distributed can be summarized as:

• Estimate the sample mean (μ = 7.22).
• Rank the data in ascending order.
• Calculate the exponential CDF Fo with mean μ.
• Calculate the empirical cumulative frequencies Fn and Fn−1.
• Calculate D+ using (D.1), D− using (D.2), and Dmax = 0.3128.
• Calculate the K–S statistic K = 0.7663 and compare it with tabulated

values.

These steps are summarized in Table D.2. Fig. D.4 provides a visual com-
parison between the measurements and the theoretical distribution. From Ta-
ble D.3 we conclude that for these 6 data samples the probability Kdata ≤ Kcrit

is 75%, and therefore these data are exponentially distributed (the Null Hy-
pothesis) at this level of signficance (α = 0.25). ��

Table D.3. Critical K–S statistics for exponential fit

Statistic Value

N 6
Dmax 0.3128
Kdata 0.7663
Kcrit 0.7703
p-value 0.75
α 0.25

404 D Performance Measurements and Tools

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1 2 3 4 5 6

Sample

C
um

ul
at

iv
e

F
re

qu
en

cy

Empirical

Theoretical

Fig. D.4. Exponential fit to cumulative frequency data

Looking up the relevant K–S statistics in tables can be extremely inconvenient.
The following Perlscript kstest.pl sorts the measured data and computes the
coresponding K–S p-value:

#! /usr/bin/perl

kstest.pl

@data = (11.72, 10.43, 8.02, 7.58, 1.43, 4.12);

@sorted = sort { $a <=> $b } @data;

$num= @sorted; # number of observations

$smean = 0.0;

foreach $ds (@sorted) { $smean += $ds; }

$smean /= $num;

Compute Exp CDF

foreach $ds (@sorted) {

push(@expCDF, 1 - exp(-$ds / $smean));

}

Compare data against Exp CDF

$D = 0.0;

for ($j = 1; $j <= $num; $j++) {

$fn = $j / $num;

$ff = $expCDF[$j-1];

$Dt = max(abs($fo - $ff), abs($fn - $ff));

D.8 Are Your Data Poissonian? 405

if ($Dt > $D) { $D = $Dt };

$fo = $fn;

}

$K = sqrt($num) * $D;

$pvalue = 1 - exp(-2 * $K**2) * (1 - 2 * $K / (3 * sqrt($num)));

Print the results

print "Data : "; printdata(@data);

print "Ranked: "; printdata(@sorted);

print "ExpCDF: "; printdata(@expCDF);

print "\n" . "K-S Statistics\n" . "--------------\n";

printf("Observations: %2.0f\n", $num);

printf("Sample mean : %7.4f\n", $smean);

printf("D statistic : %7.4f\n", $D);

printf("K statistic : %7.4f\n", $K);

printf("Probability : %7.4f\n", $pvalue);

#---- Subroutines ----#

sub printdata {

my $datum;

foreach $datum (@_) {

printf("%7.4f ", $datum);

}

print "\n";

}

sub max {

my $max = shift(@_);

foreach $next (@_) {

$max = $next if $max < $next;

}

return $max;

}

The following output was generated by the kstest.pl script using the same
data set as Example D.1:

Data : 11.7200 10.4300 8.0200 7.5800 1.4300 4.1200

Ranked: 1.4300 4.1200 7.5800 8.0200 10.4300 11.7200

ExpCDF: 0.1798 0.4350 0.6502 0.6709 0.7643 0.8029

K-S Statistics

Observations: 6

Sample mean : 7.2167

D statistic : 0.3169

K statistic : 0.7761

Probability : 0.7635

406 D Performance Measurements and Tools

The computed p-value (the probability that the data are exponentially dis-
tributed) differs from that in Table D.3 because it is calculated directly from
the value of Kdata.

Exponentially distributed values can be used to test programs like kstest.pl.
The following Perlscript genexp.pl generates exponential variates using a ro-
bust pseudo-random number generator.

#! /usr/bin/perl

genexp.pl

$x = 1; # Seed the RNG

Generate 20 EXP variates with mean = 5

for ($i = 1; $i <= 20; $i++) {

printf("%2d\t%6.4f\n", $i, exp_variate(5.0));

}

sub exp_variate {

Return an exponential variate.

log == Ln in Perl.

my ($mean) = @_;

return(-log(rand_num() / $mean));

}

sub rand_num {

Portable RNG

Return a (pseudo) random number between 0.0 and 1.0

use integer;

use constant ac => 16807; # Multiplier

use constant mc => 2147483647; # Modulus

use constant qc => 127773; # m div a

use constant rc => 2836; # m mod a

my $x_div_q; # x divided by q

my $x_mod_q; # x modulo q

my $x_new; # New x value

$x_div_q = $x / qc;

$x_mod_q = $x % qc;

$x_new = (ac * $x_mod_q) - (rc * $x_div_q);

if ($x_new > 0) { $x = $x_new; }

else { $x = $x_new + mc; }

no integer;

return($x / mc);

}

D.9 Performance Measurement Standards 407

D.9 Performance Measurement Standards

A number of performance management standards that try to encompass many
of the above requirements are either available or in development. Some of the
better-known standards are listed here:

APPLMIB Application Management Infomation Base. Extensions to the
SNMP and MIB internet protocols intended to include application-level
performance statistics.
www.ietf.org/html.charters/OLD/applmib-charter.html

AQRM Application Quality Resource Management. Emerging Open Group
standard. www.opengroup.org/aquarium

ARM Application Response Measurement. www.opengroup.org/management/
arm.htm

SNMP Simple Network Management Protocol. Used by all network man-
agement tools as well as a growing number of general performance man-
agement tools. www.ietf.org/html.charters/ snmpv3-charter.html.

UMA Universal Measurement Architecture. Architectural specification www.
opengroup.org/products/ publications/catalog/c427.htm for dis-
tributed performance data collection and monitoring.

Other than SNMP and APPLMIB, all these standards are now belong to the
Open Group. For a more extended discussion about the role of performance
management standards [see Gunther 2000a, Chap. 4].

E

Compendium of Queueing Equations

This compendium collects in one place the formulæ that are likely to be
most useful for system performance analysis. Table E.1 summarizes the basic
definitions and metrics used to characterize queues. Table E.2 summarizes the
queueing delays presented in Chaps. 2 and 3.

E.1 Fundamental Metrics

The rightmost column contains a reference to the location where each formula
can be found in the text.

Table E.1. Fundamental metric relationships

Definition Formula Reference

Total arrival count Ak Table 2.1
Total completion count Ck Table 2.1
Measurement period T Table 2.1
Busy time Bk Table 2.1
Visit count at server Vk Table 2.1
Think time (IS) Z Sect. 2.11.1
Number of servers m
Arrival rate λk = Ak/T (2.1)
System throughput X = C/T (2.3)
Service time at server S = B/C (2.8)
Demand at server Dk = VkSk (2.9)
Utilization ρk = Bk/T (2.10)
Residence time Rk = Wk + Sk (2.12)
Little’s (macro) law Q = λR = XR (2.14)
Little’s (micro) law ρk = λkSk = XkSk (2.15)

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

410 E Compendium of Queueing Equations

E.2 Queueing Delays

The equations in Table E.2 are expressed in terms of the more general ser-
vice demand D defined by (2.9) in Chap. 2, rather than the service time S.
For further clarification, the subscript k has been dropped. The service time
defined in Table E.1 is equivalent to the service demand when the visit count
V = 1.

Table E.2. Response time formulae

Queue Delay Equation

M/M/1 R = D/(1 − ρ) (2.35)

Parallel R = D/(1 − ρ) (2.44)

M/M/m R 	 D/(1 − ρm) (2.63)

M/M/1//N R(N) = (N/X) − Z (2.90)

M/G/1 RPK = S + S(1 + C2
s)ρ/2(1 − ρ) (2.118)

M/D/1 RPK = S + Sρ/2(1 − ρ) (2.102)

M/M/1 RPK = D + Dρ/(1 − ρ) (2.35)

F

Installing PDQ and PerlPrograms

F.1 Perl Scripts

Table F.1 contains the location and description of non-PDQ Perlscripts. For
readers unfamiliar with writing Perlcode, several simple examples are denoted
with bold page numbers.

Table F.1. Alphabetical list and page location of (non-PDQ) Perlscripts

Program Page Description

arrivals.pl 54 Calculates arrival rate from data set using Perl
bench1.pl 18 Example use of the PerlBenchmark timing module
bench2.pl 18 Example use of the PerlBenchmark CPU times
erlang.pl 84 Iterative algorithms for Erlang B and C functions
genexp.pl 406 Generates exponentially distributed variates
getHTML.pl 342 Using PerlLWP::UserAgent to fetch some HTML
getload.pl 170 Collect the load average using the unixuptime command
kstest.pl 404 Kolmogorov–Smirnov test for exponentially distributed data
mvaapproxsub.pl 139 Subroutine representation of the approximate MVA solution
mvasub.pl 138 Subroutine representation of the exact MVA solution
passcalc.pl 133 Manual calculation of performance metrics for passport.pl
repair.pl 90 Algorithm to solve the classic Repairman queueing model
residence.pl 71 Calculates residence time from data set using Perl
servtime.pl 57 Calculates service time from data set using Perl
thruput1.pl 55 Calculates throughput from data set using Perl
timely.pl 16 Format Time::Local in unixtm data structure
timeshare.pl 186 Calculates M/M/m//N performance metrics
timetz.pl 20 Find equivalent time in a specified timezone
timrez.pl 17 Uses the PerlTime::HiRes high-resolution timer
utiliz1.pl 58 Elementary calculation of utilization using Perl

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

412 F Installing PDQ and PerlPrograms

F.2 PDQ Scripts

Table F.2 contains the location and description of PerlPDQ scripts. The more
didactic examples are denoted with bold page numbers.

Table F.2. Alphabetical list and page location of PerlPDQ scripts

Program Page Description

abcache.pl 280 SMP cache model with write-back and write-through protocols
cluster.pl 291 Query times for three-tier parallel cluster model
cs baseline.pl 326 Client/server baseline model with three-class workload
ebiz.pl 361 Web application with load-dependent server and dummy queues
elephant.pl 309 SPEC multiuser benchmark model
feedback.pl 242 Single queue with feedback
feedforward.pl 240 Tandem queue circuit
fesc.pl 259 Load-dependent (flow-equivalent) server model
florida.pl 263 Florida benchmark performance bounds
httpd.pl 347 HTTP demon benchmark analysis
mm1.pl 220 M/M/1 uniserver queueing model
mm1n.pl 239 Closed-circuit uniserver with N finite requests
multibus.pl 276 SMP performance with multiple memory buses
mwl.pl 246 Multiclass workload model
passport.pl 244 Open series-parallel circuit with cross-coupled flows
shadowcpu.pl 252 Closed circuit with priority scheduling

F.3 Installing the PDQ Module

The Perlversion of Pretty Damn Quick (PDQ) can be downloaded from www.
perfdynamics.com. The Perlinterpreter, needed to run PDQ, is inherently
available on a wide variety of platforms. In general, it is already installed on
unixor Linuxplatforms, so the following sequence of commands can be used
to install the PDQ Perlmodule:

1. Unzip it: gunzip pdq.tar.gz will produce pdq.tar
2. Untar it: tar -xvf pdq.tar will produce the directory pdq/
3. Change to that directory: cd pdq and locate the directory perl5/
4. Change to that directory: cd perl5
5. Run the setup script: ./setup.sh
6. Go back to the PDQ directory: cd ..

More explicit instructions can be found at the web site www.perfdynamics.
com. You should also check that web site for any changes regarding future
releases of PDQ. You are now ready to execute any of the Perlscripts listed

F.3 Installing the PDQ Module 413

in Tables F.1 and F.2. A similar procedure can be applied to the installation
of almost any Perlmodule, including those from CPAN (www.cpan.org).

For other Perlenvironments, such as MacPerl (MacOS), ModPerl (Apache),
Active Perl (Microsoft Windows), the reader should consult the appropriate
documentation for the correct installation procedure.

G

Units and Abbreviations

G.1 SI Prefixes

Throughout this book, we use the conventions of the basic International Sys-
tem of Units (SI) for physical quantities summarized in Table G.1.

Table G.1. Prefixes for general SI units

Greater than 1 Less than 1

Symbol Name Factor Symbol Name Factor

Y yotta 10+24 m milli 10−3

E exa 10+18 micro 10−6

P peta 10+15 n nano 10−9

T tera 10+12 p pico 10−12

G giga 10+9 f femto 10−15

M mega 10+6 a atto 10−18

k kilo 10+3 y yocto 10−24

G.2 Time Suffixes

Table G.2 summarizes the conventions for units of time used throughout this
book. The units in the lower half of Table G.2 are not officially a part of the
SI unit system but occur frequently enough to be accepted implicitly.

G.3 Capacity Suffixes

Units of digital computer capacity, however, present some ambiguities. Al-
though physical quantities like cycles per second (Hz) are measured in base-10

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

416 G Units and Abbreviations

Table G.2. Units of time

Symbol Name SI unit

s second 100 s
ms millisecond 10−3 s
s microsecond 10−6 s

ns nanosecond 10−9 s

min minute 60 s
h hour 60 m = 3, 600 s
d day 24 h = 86, 400 s

(decimal) units, digital quantities involving bits (binary digits) are measured
in base-2 (binary) units. The International Electrotechnical Commission (IEC)
published unambiguous computing technology units in 1998. Further details
are available at the NIST web site (http://physics.nist.gov/cuu/Units/
index.html). This proposed convention has not yet been widely adopted in
the industry, so we do not use it either. For completeness, we summarize the
usual computer industry units that we do use, together with the IEC units
in Table G.3. A kilobyte refers not to 1,000 bytes but the power of two clos-

Table G.3. Units of computer capacity

Symbol Name IEC-Symbol IEC-Name Decimal unit Power of 2

b bit b bit 8 b 20 b
B byte B byte 8 b 23 b
KB kilobyte KiB kibibyte 1, 024 B 210 B
MB megabyte MiB mebibyte 1, 048, 576 B 220 B
GB gigabyte GiB gibibyte 1, 073 741, 824 B 230 B
TB terabyte TiB tebibyte 1.099, 511, 6× 1012 B 240 B

est to that number viz. 1,024 bytes = 210 B; similarly for the other prefixes
shown in Table G.3. Therefore, one has to know the context to know which
interpretation of kilo applies. The strict SI convention introduces a new set of
prefixes to remove this ambiguity. For example, 1,024 B would be referred to
as a kibibyte (meaning, a kilobinary byte) and denoted 1 KiB.

H

Solutions to Selected Exercises

Solutions for Chap. 1

1.1 Same as GMT or UTC

1.2 A table of subsystem throughputs, expressed in equivalent TPS units,
can be constructed as follows:

Subsystem TPS Pkt/s IO/s
Client CPU 500.00 – –
NIC card 120.00 2400 –
LAN network 52.50 1050 –
Router 350.00 7000 –
WAN network 40.00 800 –
Server CPU 120.00 – –
Server disk 52.25 – 52.25

Therefore, the LAN is expected to be the primary system bottleneck, with
the server disk the secondary bottleneck.

1.4
(a) 99.6%
(b) 34.94 h

Solutions for Chap. 2

2.1
(a) 60 customers
(b) 1

2
(c) By the flow balance assumption X ≡ λ = 1

2

(d) S = B
C

= 1.5
(e) minutes

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

418 H Solutions to Selected Exercises

2.2
(a) 1.75 min
(b) 3.43 min

2.3
(a) 186.01%
(b) R � S

1−ρ2 = 7.41 mins W = R − S = 6.41 min
(c) 4 servers

2.4 No. A useful mnemonic is:

Erlang B stands for bounced call because the call has to be retried whereas,
Erlang C stands for call waiting because the call is enqueued.

2.7 Z = 38.5 s

2.8 R = 5 s

2.9 Q = 5.6

2.10 R = 6
18 h

Solutions for Chap. 3

3.1 p = VdkA/Vcpu and q = V/Vcpu

3.2
(a) The branching equations are:

Xcpu = X + (1 − p)Xcpu

XdkA = q(1 − p)Xcpu

XdkB = (1 − q)(1 − p)Xcpu

Solving for Xcpu we find Xcpu = X +XdkA +XdkB. Dividing both sides by X
produces the desired result.
(b) The visit ratios are:

Vcpu =
1
p

VdkA =
XdkA

X

VdkB =
XdkB

X

Inverting the first of these gives p.
(c) q = p VdkA/(1− p)
(d) p = 0.006, and q = 0.444

H Solutions to Selected Exercises 419

3.3 Selected circuit outputs:

XA
cpu = λAV A

cpu = 1.580 TPS

UA
cpu = λADA

cpu = 0.158

RA
cpu = 1.58 s

QA
cpu = 0.25 transactions

RA = RA
cpu + RA

dsk = 30.08 s

3.4 Networked Storage
82% (not 75%)

Solutions for Chap. 4

4.2 Exponential smoothing

4.3 Using fixed-point 1.2 format
(a) 2.24
(b) 0.01
(c) 0.00

Solutions for Chap. 5

5.1 3 ms

5.2 499.60 TPS

Solutions for Chap. 7

7.1
(a) Use W P/Z
(b) Use Z(R − W)/P

7.2 Applying (7.12) produces:

X =
1.25× 109

(0.71)(965× 103)
= 1, 824.42 TPS

7.3 26 nodes

Solutions for Chap. 8

8.2 Steve Gaede

420 H Solutions to Selected Exercises

8.3 Let T (1) = T be the execution time on a uniprocessor. With α the serial
fraction of the execution time and (1 − α) the fraction that can be executed
in parallel, the total execution time T (p) on p processors is given by:

T (p) = αT +
(

1 − α

p

)
T . (H.1)

The speed-up is defined as:

S(p) =
T (1)
T (p)

=
T

αT +
(

1−α
p

)
T

, (H.2)

which, on simplification, produces (8.1).

Bibliography

Ajmone-Marsan, M., Balbo, G., and Conte, G. (1990). Performance Models
of Multiprocessor Systems. MIT, Boston, MA.

Albert, R. and Barabasi, A. (2002). Statistical mechanics of complex networks.
Rev. Mod. Phys., 74:47.

Allen, A. O. (1990). Probability, Statistics, and Queueing Theory with Com-
puter Science Applications. Academic, San Diego, CA, 2nd edition.

Amdahl, G. (1967). Validity of the single processor approach to achieving
large scale computing capabilities. Proc. AFIPS Conf., 30:483–485.

Baskett, F., Chandy, K. M., Muntz, R. R., and Palacios, F. G. (1975). Open,
closed and mixed networks of queues with different classes of customers. J.
ACM, 22(2):248.

Bloch, G., Greiner, S., der Meer, H., and Trivedi, K. S. (1998). Queueing
Networks and Markov Chains. Wiley, New York, NY.

Bovet, D. P. and Cesati, M. (2001). Understanding the Linux Kernel. O’Reilly,
Sebastopol, CA.

Brownlee, N. and Ziedins, I. (2002). Response time distributions for global
name servers. Passive and Active Measurement (PAM) Workshop. www.
labs.agilent.com/pam2002/proceedings/index.htm. Cited Jul 3, 2004.

Buch, D. K. and Pentkovski, V. M. (2001). Experience in characterization of
typical multi-tier e-Business systems using operational analysis. In Proc.
CMG Conference, pages 671–681, Anaheim, CA.

Buyya, R., editor (1999). High Performance Cluster Computing: Architectures
and Systems, volume 1. Prentice-Hall, Upper Saddle River, NJ.

Buzen, J. (1973). Computational algorithms for closed queueing networks
with exponential servers. Comm. ACM, 16(9):527–531.

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

422 Bibliography

Buzen, J. P. (1971). Queueing Network Models of Multiprogramming. Ph.D.
thesis, Harvard University, Cambridge, MA.

Cockcroft, A. and Pettit, R. (1998). Sun Performance and Tuning. SunSoft,
Mountain View, CA, 2nd edition.

Cohen, G. A. and Chase, J. S. (2001). An architecture for safe bytecode
insertion. Softw. Pract. Exper., 34:1–12.

Courtois, P. J. (1985). On time and space decomposition of complex struc-
tures. Comm. ACM, 28(6):590–603.

Denning, P. J. and Buzen, J. P. (1978). The operational analysis of queueing
network models. Computing Surveys, 10(3):225–261.

DeVany, A. S. and Walls, D. (1996). Bose-Einstein dynamics and adaptive
contracting in the motion picture industry. The Economic Journal, pages
1493–1514.

Diao, Y., Gandhi, N., Hellerstein, J. L., Parekh, S., and Tilbury, D. M. (2002).
MIMO control of an apache web server: Modeling and controller design. In
American Control Conference, pages 11–12, Anchorage, AK.

Dietz, M., Ellis, C. S., and Starmer, C. F. (1995). Clock instability and its
effect on time intervals in performance studies”. In Proc. CMG Conference,
pages 439–448, Nashville, TN.

Dinda, P. and O’Hallaron, D. (1999). An extensible toolkit for resource pre-
diction in distributed systems. Technical Report CMU-CS-99-138, School
of Computer Science, Carnegie Mellon University, Pittsburgh, PA.

Erlang, A. (1909). The theory of probabilities and telephone conversations.
Nyt Tidsskrift for Matematik B, 20:33–40.

Erlang, A. (1917). Solution of some problems in the theory of probabilities of
significance in automatic telephone exchanges. The Post Office Electrical
Engineer’s Journal, 10:189–197.

Flynn, M. J. (1995). Computer Architecture: Pipelined and Parallel Processor
Design. Jones and Bartlett, London, UK.

Franklin, G. F., Powell, J. D., and Emami-Naeini, A. (1994). Feedback Control
of Dynamic Systems. Addison-Wesley, Reading, MA, 3rd edition.

Friedman, M. and Pentakalos, O. (2002). Windows 2000 Performance Guide.
O’Reilly, Sebastopol, CA.

Gennaro, C. and King, P. J. B. (1999). Parallelising the mean value analysis
algorithm. Transactions of The Society for Computer Simulation Interna-
tional, 16(1):16–22.

Gold, T., editor (1967). The Nature of Time. Cornell University, Ithaca, NY.

Bibliography 423

Gordon, W. J. and Newell, G. F. (1967). Closed queueing networks with
exponential servers. Operations Research, 15:244–265.

Gunther, N. J. (1989). Path integral methods for computer performance anal-
ysis. Information Processing Letters, 32(1):7–13.

Gunther, N. J. (1990). Bilinear model of blocking transients in large circuit-
switching networks. In King, P. J. B., Mitriani, I., and Pooley, R. J., edi-
tors, PERFORMANCE ’90, volume Proc. 14th IFIP WG 7.3 International
Symposium on Computer Performance Modelling, Measurement and Eval-
uation, pages 175–189. North-Holland, Amsterdam.

Gunther, N. J. (1992). On the application of barycentric coordinates to the
prompt and visually efficient display of multiprocessor performance data.
In Pooley, R. and Hillston, J., editors, Performance TOOLS 1992 — Pro-
ceedings of Sixth International Conference on Modelling Techniques and
Tools for Computer Performance Evaluation, pages 67–80. Antony Rowe,
Wiltshire, UK.

Gunther, N. J. (1996). Understanding the MP effect: Multiprocessing in pic-
tures. In Proc. CMG Conference, pages 957–968, San Diego, CA.

Gunther, N. J. (1999). Capacity planning for Solaris SRM: All I ever wanted
was my unfair advantage (And why you can’t get it!). In Proc. CMG
Conference, pages 194–205, Reno, NV.

Gunther, N. J. (2000a). The Practical Performance Analyst: Performance-by-
Design Techniques for Distributed Systems. iUniverse, Lincoln, NE, Reprint
edition. Originally published by McGraw-Hill, New York, NY (1998).

Gunther, N. J. (2000b). The dynamics of performance collapse in large-scale
networks and computers. International Journal of High Performance Com-
puting Applications, 14(4):367–372.

Gunther, N. J. (2002a). A new interpretation of Amdahl’s law and Geometric
scalability. LANL e-print xxx.lanl.gov/abs/cs.DC/0210017. Cited Jun
12, 2004.

Gunther, N. J. (2002b). Hit-and-run tactics enable guerrilla capacity planning.
IEEE IT Professional, July–August:40–46.

Gunther, N. J. (2004). On the connection between scaling laws in parallel com-
puters and manufacturing systems. In Erkut, E., Laporte, G., Gendreau,
M., Verter, V., and Castillo, I., editors, CORS/INFORMS International
Meeting, pages 27–28, Banff, Alberta, Canada. Institute for Operations Re-
search and the Management Sciences.

Gunther, N. J., Christensen, K. J., and Yoshigoe, K. (2003). “Characteriza-
tion of the burst stabilization protocol for the RR/CICQ switch. In IEEE
Conference on Local Computer Networks, Bonn, Germany.

424 Bibliography

Gunther, N. J. and Shaw, J. (1990). Path integral evaluation of ALOHA
network transients. Information Processing Letters, 33(6):289–295.

Hawking, S. (1988). A Brief History of Time. Bantam Books, New York, NY.

Hellerstein, J. L., Gandhi, N., and Parekh, S. (2001). Managing the per-
formance of Lotus Notes: A control theoretic approach. In Proc. CMG
Conference, pages 397–408, Anaheim, CA.

Jackson, J. R. (1957). Networks of waiting lines. Operations Research, 5:518–
521.

Jagerman, D. L. (1974). Some properties of the Erlang loss function. Bell
Systems Technical Journal, 55:525.

Jain, R. (1990). The Art of Computer Systems Performance Analysis. Wiley,
New York, NY.

Joines, S., Willenborg, R., and Hygh, K. (2002). Performance Analysis for
JavaTM Web Sites. Addison-Wesley, Boston, MA.

Kendall, D. G. (1951). Some problems in the theory of queues. Journal of
Royal Statistical Society, Series B13:151–185.

Keshav, S. (1998). An Engineering Approach to Computer Networking.
Addison-Wesley, Reading, MA, 3rd edition.

Kleeman, L. and Cantoni, A. (1987). On the unavoidability of metastable
behavior in digital systems. IEEE Trans. Computers, C-36(1):109–112.

Kleinrock, L. (1976). Queueing Systems, I: Theory. Wiley, New York, NY.

Lamport, L. (1978). Time, clocks, and the ordering of events in a distributed
system. Comm. ACM, 21(7):558–565.

Lazowska, E. D., Zahorjan, J., Graham, G. S., and Sevcik, K. C. (1984). Quan-
titative System Performance: Computer System Analysis Using Queueing
Network Models. Prentice-Hall, Engelwood Cliffs, NJ. Out of print but avail-
able online at http://www.cs.washington.edu/homes/lazowska/qsp/.
Cited Jun 12, 2004.

Lilja, D. J. (2000). Measuring Computer Performance: A Practitioner’s
Guide. Cambridge Univ. Press, Cambridge, UK.

Little, J. D. C. (1961). A proof of the queueing formula L = λW . Operations
Research, 9:383–387.

McCanne, S. and Torek, C. (1993). A randomized sampling clock for CPU
utilization estimation and code profiling. In Winter USENIX Conference,
pages 387–394, San Diego, CA.

McGrath, R. E. and Yeager, N. J. (1996). Web Server Technology: The Ad-
vanced Guide for World-Wide Web Information Providers. Morgan Kauf-
mann, San Francisco, CA.

Bibliography 425

Mills, D. L. (1992). Network Time Protocol (version 3): Specification, im-
plementation, and analysis. IETF Network Working Group RFC 1305.
www.ietf.org/rfc/rfc1305.txt. Cited Jun 12, 2004.

Moore, C. G. (1971). Network models for large-scale time-sharing systems.
Technical Report 71-1, Dept. Industrial Engineering, Univ. Michigan, Ann
Arbor, MI.

Musumeci, G. P. D. and Loukides, M. (2002). System Performance Tuning.
O’Reilly, Sebastopol, CA, 2nd edition.

Nelson, B. and Cheng, Y. P. (1991). The anatomy of an NFS I/O operation:
How and why SCSI is better than IPI-2 for NFS. Technical Report No. 6,
Auspex Systems Inc., Santa Clara, CA.

Nelson, R. (1984). Stochastic catastrophe theory in computer performance
modeling. Comm. ACM, 34:661.

Oppenheim, A., Willsky, A., and Young, I. (1983). Signals and Systems.
Prentice-Hall, Englewood Cliffs, NJ.

Orwant, J., Heitaniemi, J., and MacDonald, J. (1999). Mastering Algorithms
with Perl. O’Reilly, Sebastopol, CA.

Park, K. and Willinger, W., editors (2000). Self-Similar Network Traffic and
Performance Evaluation. Wiley, New York, NY.

Peek, J., O’Reilly, T., and Loukides, M. (1997). UNIX Power Tools. O’Reilly,
Sebastopol, CA, 2nd edition.

Plale, B., Dinda, P., and von Laszewski, G. (2002). Key concepts and services
of a GRID information service. In Proceedings of the 15th International
Conference on Parallel and Distributed Computing Systems (PDCS 2002),
pages 437–442, Louisville, KY.

Raynal, M. and Singhal, M. (1996). Logical time: Capturing causality in
distributed systems. IEEE Computer, 29(2):49–56.

Reiser, M. and Lavenberg, S. (1980). Mean-value analysis of closed multi-chain
queueing networks. J. ACM, 27(2):313–322.

Saltzer, J. and Gintell, J. (1970). The instrumentation of Multics. Comm.
ACM, 13(8):495–500.

Samson, S. L. (1997). MVS Performance Management: OS/390 Edition.
McGraw-Hill, New York, NY.

Scherr, A. L. (1967). An Analysis of Time-Shared Computer Systems. MIT,
Cambridge MA.

Schwartz, A. and Weiss, A. (1995). Large Deviations for Performance Analy-
sis: Queues, Communications, and Computing. Chapman & Hall, London,
UK.

426 Bibliography

Schwartz, R. L. and Phoenix, T. (2001). Learning Perl. O’Reilly, Sebastopol,
CA, 3rd edition.

Sevcik, K. and Mitrani, I. (1981). The distribution of queueing network states
at input and output instants. J. ACM, 28(2):358–371.

Smith, C. U. and Williams, L. G. (2001). Performance Solutions: A Practi-
cal Guide to Creating Responsive, Scalable Software. Pearson Education,
Indianapolis, IN.

Sornette, D. (2002). Why Stock Markets Crash? Critical Events in Complex
Financial Systems. Princeton Univ. Press, Princeton, NJ.

Splaine, S. and Jaskiel, S. P. (2001). The Web Testing Handbook. STQE,
Orange Park, FL.

Trivedi, K. S. (2000). Probability and Statistics with Reliability, Queueing,
and Computer Science Applications. Wiley, New York, NY, 2nd edition.

Tsuei, T. F. and Vernon, M. K. (1992). A multiprocessor bus design model
validated by system measurement. IEEE Trans. Parallel and Distributed
Systems, 3(6):712–727.

Vahalia, U. (1996). UNIX Internals: The New Frontier. Prentice-Hall, Upper
Saddle River, NJ.

Verma, V. (1992). A meaningful measure of response time for SLA. In Proc.
CMG Conference, pages 1–7, Reno, NV.

Wall, L., Christiansen, T., and Orwant, J. (2003). Programming Perl. O’Reilly,
Sebastopol, CA, 3rd edition.

Walrand, J. and Varaiya, P. (1996). High Performance Communication Net-
works. Morgan Kaufmann, San Francisco, CA.

Westall, J. and Geist, R. (1997). A hybrid tool for the performance evaluation
of NUMA architectures. In Winter Simulation Conference, pages 1029–
1036, Atlanta, GA.

Wilson, S. and Kesselman, J. (2000). JavaTM Platform Performance: Strate-
gies and Tactics. Pearson Education, Indianapolis, IN.

Wolski, R., Spring, N., and Hayes, J. (2000). Predicting the CPU availability of
time-shared UNIX systems on the computational grid. Cluster Computing,
3(4):293–301.

Xie, M. (1991). Software Reliability Modeling. World Scientific, Singapore.

Index

L, see Waiting line
Q, see Queue length
R, see Response time
Rk, see Residence time
W , see Waiting time
λ, see Arrival rate
μ, see Service rate
ρ, see Utilization

100Base-T, 321, 322

Accuracy of data, 402
ACID tests, 373
Aircraft boarding, 101, 104
AIX, 397
Amdahl’s law, 104, 302, 312
Analytic model, 373
ANOVA (Analysis of variance), 374
ANSI standard, 373
Application cluster, 321
APPLMIB (Application management

information base), 30, 374, 407
Approximate MVA, 139, 224
AQRM (Application quality resource

management), 30, 374, 407
ARM (Application response measure-

ment), 31, 374, 407
Arrival

rate, 53, 146, 409
theorem, 136, 200

Arrival theorem, 392
Assembly code, 323
asymptote, 197, 211
Availability, 34

Awk versus Perl, vi

B2B (Business-to-business), 374, 375
B2C (Business-to-consumer), 318, 321,

324, 339, 374, 375
Bad measurements, 13, 192, 355, 357,

359, 399
Balanced bounds, 199, 294
Balanced flow, 53
Balanced system, 294, 296
Bandwidth, 269, 273, 345, 374
Batch means, 374
Batch window, 145
Batch workload, 144, 145, 150, 156
Bathtub function, 36
BCMP rules, 153, 374
Bellcore data, 124
Benchmark, 374

SDET, 303, 306
SPEC, 303, 374
TPC, 374, 383
TPC-W, 321

BEP (Back-end processor), 290, 291,
294, 296, 298, 374

Bernoulli distribution, 122
Binary

precedence, 10
SI prefix conventions, 415

Blocking in queues, 155
BMC Patrol, 401
Bottleneck, 28, 193, 334, 336
Bounds

Amdahl, 312
analysis, 191, 263

N. J. Gunther, Analyzing Computer System Performance with Perl::PDQ,
DOI 10.1007/978-3-540-26860-4, © Springer-Verlag Berlin Heidelberg 2005

428 Index

balanced, 199
bottleneck, 192
response time, 196, 197
saturation, 193
uncontended, 194

BPR (Business process re-engineering),
374

Branching probability, 123, 126, 127,
130, 140, 142, 143

Branching ratio, 132, 140
Browser, 375
BSS (Block started by symbol), 375
Buffer

disk, 67
finite queue, 88, 160
infinite queue, 48, 68
unix cache, 31
waiting room, 48, 114

Bulk arrivals, 154, 161
Bus, see Memory bus
Bus topologies, 268
Busy time, 52, 57, 409
BWU (Business work unit), 375

C2C (Consumer-to-consumer), 375, 376
Cache

bashing, 271
false sharing, 376
fractal behavior, 271
miss rate, 270
miss ratio, 270
multiprocessor, 270
protocols, 278
read hit, 279
read miss, 272, 279
snooping, 271
test-and-set, 272
test-and-test-and-set, 272
write-back, 271, 383
write-through, 271, 383

Call center, 76, 82
Canonical solution, see PDQ
Capacity (binary) unit suffixes, 415
Capacity planning, 375
Capture ratio, 375, 402
Catastrophe theory, 45
Causality, 5
Cell phone, 82
Central server model, 375

CERN, 375
CGI, 376
Chandy–Herzog–Woo theorem, 259
Chi-square test, 402
CICS (Customer information control

system), 376
Circuit, see Queue circuit
Classic computer models, 155
Client/server

architecture, 321
architectures, 318
multitier, 319
PDQ model, 325
performance model, 321
process workflow, 324
workload characterization, 322
X windows, 201

Clock
definitions, 8
drift, 9, 21
high resolution, 13, 402
logical, 10
offset, 9
physical, 8
representations of, 14
skew, 9, 21
tick, 6, 11, 12, 174, 185
virtual, 13

Closed queue, 67, 88, 95, 121, 136
response time, 92, 139
throughput, 93, 139

Cluster
database, 290
multicomputer, 201, 268, 290, 412

CMG (Computer measurement group),
376

CMOS, 376
COMA, 376
Components

parallel, 38
series, 38

Computer model classics, 155
Concave function, 92
Concurrent users, see User loads
Conditional probability, 393
Continuous time, 6, 391
Convex function, 92
Convolution, 28
Convolution method, 136

Index 429

Counters, 55, 397
COV (Coefficient of variation), 107
COW (Copy on write), 376
Coxian, 110, 386
CPAN (Comprehensive perl archive

network), 376
CPI (Cycles per instruction), 287
CPU utilization error, 13, 402
CRM, 376
CTSS, 55, 386

Data
accuracy, 402
coherency, 303
display, see Displaying data
smoothing, 180

Data collection, 170, 192, 203, 205, 208,
219, 305, 397, 398, 401

Database, 290, 294, 296, 298
DCE (Distributed computing environ-

ment), 376
Delay node, 106, 223, 235, 238
Delays, queueing, 68
Demand, see Service demand
Demon HTTPd, 347–349
Dependent server, see Load-dependent

server
Dimensional analysis, 57, 58, 61, 287,

314
Disassembly, see Assembly code
Discrete time, 6
Disk I/O, 31
Displaying data, 187, 203, 398
Distributed

availability, 38
clocks, 9
processing, 9

Distribution
deterministic, 108
exponential, 4, 22, 23, 37, 42, 46, 107,

392
gamma, 21, 22, 46
general, 111
hyperexponential, 109
hypoexponential, 109
normal, 394
Poisson, 107
uniform, 108
Weibull, 37

DNS (Domain name service), 28, 376

Drivers, see Load testing
DSS (Decision support system), 376

DTS (Digital time service), 376
Dummy

queues, 341, 365, 370, 412
workload, 332, 412

e-Business, 357, 360
Einstein, A., vii, 5, 198

Elephant
dimensions, 314

story, 301, 314
Epoch, 5, 8

Erlang
k-stage server, 108

A.K., 48, 82, 385, 392
B function, 83

C function, 80
distribution, 108

Erlangs (unit), 82
language, 82

erlang.pl, 84
Errors in CPU utilization, 13, 402

Errors in measurement, see Bad
measurements

Ethernet 100Base-T, 321, 322
Exa (prefix), 376

Exact MVA, 138, 224
Exponential

moving average, 180
smoothing, 180

tests for, 402
variate generator, 406

Exponential distribution, 4, 22, 23, 37,
42, 46, 392

Failure rate, 35–37

Fair-share scheduler, 157
entitlements, 157

principle of operation, 158
shares, 157

virtual resources, 158
FCFS, see Queue FCFS

FDDI (Fiber distributed data interface),
376

Feedback, 126
Feedforward queues, 125

430 Index

FEP (Front-end processor), 290, 291,
294, 296, 298, 376

FESC (Flow-equivalent service center),
160, 259, 261

FIFO, see Queue FIFO
Fixed-point

arithmetic, 174, 175, 178
notation, 175, 176

Floor function, 177
Flow balance, 53
Forced flow law, 56
Forecasting, 180
Fractals, 271
FTP, 376

Gamma distribution, 21, 22, 46
Gateway, 376
gcc compiler, 323, 412
GIF, 377
GMT (Greenwich mean time), 14
GRID

computing, 189
load management, 189

Grocery store, see Queue grocery store
GUI, 377

Hazard function, see Bathtub function
High resolution timing, 17, 402
Hollywood, 45
HTML, 377
HTTP, 377
HTTP protocol, 341
HTTPd, 347–349, 377
Hybrid circuits, see Mixed circuits
Hyperbola, 72, 290, 294
Hyperexponential distribution, 109
Hypoexponential distribution, 109
HZ (kernel constant), 12, 174
Hz (SI unit), 7, 13, 19, 42, 174, 289, 415

ICMP, 377
IETF, 377
IIS (Internet Information Server), 349
Infinite

capacity server, see Delay node
population, see Open queue

Infinite server, 106, 223, 235
Inputs and outputs, PDQ, 215
Installing PDQ, viii, 215, 412

Instrumentation, see Data collection
Interactive response time law, 89
Interarrival period, 54
Interconnect topologies, 268
Internet, 28, 33, 43, 75, 106, 121, 124,

160, 318, 341, 349, 377
Intranet, 326, 377
IP (Internet protocol), 377
IPC, 377
Iron law, 287
ISO standard, 377
ISP, 377

J2EE (Java enterprise edition), 323,
377, 397

Jackson’s theorem, 129, 386
Jagerman algorithm, 84
Java, vi, 377

applet, 377
bean, 377
bytecode, 397
HotSpot compiler, 388
instrumentation, 397
performance, 357
servlet, 377
versus Perl, vi
virtual machine, 378

JBoss, 398
JIT (Just in time), 386
JMX, 377, 397
JPEG, 378
JVM (Java virtual machine), 378, 397

Kendall notation, 100, 386
Kernel, 167, 172, 174–177, 190, 397
Kolmogorov–Smirnov test, ix, 402, 404

LAN, 378
Large deviations theory, 45, 387
Latch, 378
LCFS, see Queue LCFS
LCFS-PR, see Queue LCFS-PR
LIFO, see Queue LIFO
Linux, 13, 302, 398

calc load macro, 174
calc load(), 173
load average, 170
magic numbers, 176, 178, 179
scheduler, 173

Little’s law, 59, 146, 386, 409

Index 431

macroscopic, 60
microscopic, 60
proof, 61

Load
average, 61, 167, 169, 170, 174, 178,

179, 183
damping factor, 180
optimum, 195, 308
prediction, 189
utilization, 71, 77, 80, 82, 89, 95, 96

Load balancer, 334
Load dependent server, 78
Load levels, see User loads
Load testing, 192, 210, 301, 303, 318,

339
Load-dependent server, 160, 258, 314,

366, 378
Logarithmic model, 207
Logical clock, 10

M/Cox/1, see Queue M/Cox/1
M/G/1, see Queue M/G/1
M/M/1, see Queue M/M/1
M/M/1 parallel, see Queue q(M/M/1)
M/M/1 twin queues, see Queue

2(M/M/1)
M/M/1//N, see Queue M/M/1//N
M/M/2, see Queue M/M/2
M/M/m, see Queue M/M/m
MAC (Media access control), 378
Machine repairman, see Repairman

model
make command, 412
Markov

A.A., 391
memoryless-ness, see Memoryless

property
process, 100, 107, 111, 392

Mathematica, 21, 85, 86, 96–98, 378
Mean Value Analysis (MVA), 119
Measurement errors, 13, 176, 192, 198,

355, 357, 359, 399, 402
Measurement period, 52, 53, 170, 305,

409
Mega instructions per second, 378
Memory access time, 262
Memory bus, 269, 270, 273, 276, 278
Memory constrained model, 258
Memory paging, 211

Memoryless property, 105, 107, 391
Metastability

lifetimes, 39
macroscopic, 43
microscopic, 40

Middleware, 357
MIMD, 268, 378
MIPS (Mega instructions per second),

287, 322
MIPS (Millions of instructions per

second), 304
Mirror, 378
Mixed circuits, 120, 121
Mixed workload, 144
Model types, 379, 380
Modeling assumptions, 21, 53, 105, 136,

151–154, 158, 161, 215, 218, 219,
222, 289, 322, 347, 392, 394

Modeling guidelines, 218
Modeling limitations, 161, 391
Moment generating function, 122
Moore’s law, 379
Moving average, 180
MPEG, 379
MPP, 268, 379
MRTG (Multirouter traffic grapher),

379, 399
MTBD (Mean time between defects),

39
MTBF (Mean time between failures),

36, 37, 45
MTTR (Mean time to repair), 37
Multiclass workloads, 135, 144, 246
Multics, 55, 155, 183, 386
Multiple

streams, 135, 144
workloads, 135, 144

Multiple resource possession, 154
Multiprocessor, 76, 104, 277, 303, 311,

315
Multitier architecture, 319
Mutex, 379
MUX, 379
MVA (Mean Value Analysis)

algorithm, 138
algorithm in PDQ, 146
and simulation, 152
approximate solution, 139
modeling style, 152

432 Index

multiclass, 144
Schweitzer approximation, 139
separability rules, 151, 259

MVS, 379
MVS (Multiple Virtual Storage), 13

Nopt, see Optimal load
NASA (National Aeronautics and Space

Administration), 34
NCSA, 379
Network response time, 26
Networked storage, 165, 419
NFS (network file system), 32, 379
Node

cluster, 268, 294, 296
PDQ, see PDQ node

Normal distribution, 394
Norton’s theorem, 259
NTP (network time protocol), 9, 379
NUMA, 268, 379

Observational laws, 51
Offered load, 74, 77, 79
OLTP, 379
Open Group, 380
Open queue, 67, 68, 73, 88, 95

response time, 69
Operating system

Linux, 13, 302, 398
Multics, 155, 183, 386
MVS, 13
unix, 13, 303, 383, 398
Windows 2000, 13, 398
Windows XP, 398
z/OS, 13

Operational analysis, 51
Optimal cluster configuration, 298
Optimal load, 92, 94, 195, 308
ORCA, see Performance tools
OSF, 380
OSI standard, 380

P2P (Peer-to-peer), 302, 380
Paging, see Memory paging
Parallel queries, 290
Parallel queues, 74, 131, 294, 296
Parallel work, 74, 290, 294, 298, 303
Partial ordering of events, 10
passcalc.pl, 133

Passport office, 131, 244
PASTA (Poisson arrivals see time

averages) property, 124
PCMCIA interface, 380
PDA, 380
PDF (Probability density function), 23,

83
PDQ (Pretty Damn Quick), 380

annotated example, 219
canonical solution, 224
cluster.pl, 291
cs baseline.pl, 326
cs scaleup.pl, 333
cs upgrade1.pl, 334
cs upgrade2.pl, 334
cs upgrade3.pl, 335
cs upgrade4.pl, 336
delay node, 106, 223, 235
ebiz.pl, 361
feedback.pl, 242
feedforward.pl, 240
fesc.pl, 259
florida.pl, 263
httpd.pl, 347
infinite server, 106, 223, 235
inputs and outputs, 215
installing, viii, 215, 412
memory model, 258
mm1.pl, 219
mm1n.pl, 239
modeling guidelines, 218
multiserver node, 226
mwl.pl, 246
node, 217, 219, 223–226, 228, 233,

236, 274, 332, 360, 365
passport.pl, 244
shadowcpu.pl, 252
stream, 217, 223–225, 227, 233

Percentiles, 23, 24, 26, 28, 322, 333, 335
Performability, 33
Performance model, 379, 380
Performance tools, 397

commercial, 401
generic, 398
metrics display, 398
metrics storage, 401
MRTG, 399
netstat, 52
ORCA, 169, 170, 401

Index 433

PDQ, 215
predictive, 401
procinfo, 13, 168, 398
RRDtool, 401
standards, 407
TeamQuest view, 400
uptime, 168
vmstat, 13, 54, 211, 398

Performance tuning, viii
Performance-by-design, 306, 380
Perl, vi, viii, 73, 84, 86, 90, 215, 217,

218, 223, 225, 238, 263, 380, 412
pop, 100
programs (list of), 412
push, 100
unshift, 100

Peta (prefix), 380
Petri nets, 380
PHP, vi, 302, 380
PMF (Probability mass function), 25,

83
Poisson

branching, 123
distribution, ix, 24, 107, 122, 402
merging, 122
non-Poisson, 124
PASTA properties, 122
process, ix, 107
properties, 122
ratio, 83
stream, 122
tests for, 402
violation of, ix, 124

Poisson assumption, 4, 22, 25, 37, 392
Pollaczek–Khintchine equation, 112,

124
Polling systems, 113

exhaustive, 114
non-exhaustive, 114
polling delay, 114

POSIX, 380
Post office, see Queue post office
Priority

nice, 156
queue, 252

Priority scheduler, 158
Probability distribution, 22, 24, 80, 83,

86, 105, 107–111, 392, 394
Process aliasing errors, 402

Processing power, 381
Processor sharing, 112
Product-form network, 151
Python, vi, 381

versus Perl, vi

Quality of service, 381
Quantum mechanics, 45, 388
Queue

2(M/M/1), 73
M/Cox/1, 110
M/D/1, 108
M/Ek/1, 108
M/G/1, 111, 113, 115
M/G/1 with vacations, see Polling

systems
M/Hypo/1, 109
M/Hk/1, 109
M/M/1, 68, 219, 238, 412
M/M/1//N , 88, 239, 412
M/M/2, 76, 86
M/M/m, 79, 106, 239
M/M/m//N , 240
M/U/1, 108
q(M/M/1), 74
bistable, 43
bottleneck, 193
circuit, 120
closed circuit, 136
Coxian, 110
delay node, 238
distribution, 262
FCFS, 100, 376
feedback, 126, 242, 412
feedforward, 125, 240, 412
FIFO, 100
fluctuations, 43
grocery store, 48, 101, 104, 105
hyperexponential, 109
LCFS, 100, 378
LCFS-PR, 154, 378
LIFO, 100, 378
limitations, 161
Little’s law, 59
load-dependent server, 160, 258, 366
mixed, 120, 121
multi-server, 106
open circuit, 124
parallel, 49, 74, 131, 244

434 Index

polling, see Polling systems
post office, 51, 76, 101, 104, 105
priority, 158, 252, 412
schematics, 99
series, 125
shadow server, 158, 252, 387
shorthand, 99
stability, 43, 45, 66, 67
tandem, 192

Queue length
average, 60, 66, 72, 79, 95, 97–99,

169, 184
instantaneous, 61, 181
run-queue, 169, 181

Queueing network model, 120, 381
Queueing theory lite, viii

R, see Statistical software
RAID, 381
Random number generator, 406
RDBMS, 381
Regression fit, 180, 366
Relative throughput, 56
Reliability, 33, 35, 381

hardware, 35
software, 39

repair.pl, 90
Repairman model, 90, 239
Residence time, 59, 409, 410
Residual service time, 112
Resource possession, 154, 162, 163
Response time, 21, 59, 68, 89

M/M/1, 68
M/M/1//N , 89
M/M/2, 78
M/M/m, 80
client-throttled, 355, 357, 359
end-to-end, 22, 28, 59
infinite, 72
interactive, 89
parallel queues, 74
unlimited requests, 72

Retrograde throughput, 305, 314, 355
RMF (Resource measurement facility),

13, 381, 398
Round robin, see Scheduling
RPC, 381
RPS, 381
RR, see Round robin

RRDtool, 401
RSS, 381
RTD, 381
RTE, 381
RTT, 22, 28, 381
Rule of thumb, 48, 69, 72, 115, 290, 294,

333, 382
ruptime, 168

S+, see Statistical software
SAN, 382
SAR (System activity reporter), 13,

382, 398
Saturation, 193, 334, 336
Scalability, 210, 302
Scheduling

fair-share, 157
FIFO, 111
kanban, 386
LIFO, 112
loophole, 157
parts recycling, 389
priority, 158
processor sharing, 112, 153
round robin, 112, 153
threads, 160
time-share, 155, 184

SCI interface, 382
SCOV (Squared coefficient of variation),

106, 113
SCSI, 382
Separability, 151, 259
Serial work, 302, 312, 313, 315
Series of queues, 125
Server

bottleneck, 193
Coxian, 110
deterministic, 108
Erlang-k, 108
exponential, 107
flow-equivalent, 160
general, 111
hyperexponential, 109
hypoexponential, 109
load-dependent, 160, 258, 366
saturated, 193
shadow, 158, 252, 387
uniform, 108

Service

Index 435

demand, 58, 68, 127, 323, 350, 360,
365, 366

rate, 57, 67
time, 57

Service time, 409
Shadow server, 158, 252, 387
Shape preservation, 394
Shuttle (NASA)

STS-107 (Columbia), 33
STS-51-L (Challenger), 33

SIMD, 268, 382
Simulation, ix
SLA, 382
slashdot.org, vi
SLO, 382
Slow start, see TCP/IP
SMF (System management facility), 13,

382, 398
SMP (Symmetric multiprocessor), 104,

267, 269, 271–274, 287, 382, 412
SMTP, 382
SNMP (Simple network management

protocol), 31, 189, 382, 407
Snooping cache protocol, 382
Software reliability, 39
Solaris, 397
SPEC

CPU2000, 304, 322, 334
jAppServer2003, 322
organization, 382
SDET, 303, 306, 307, 311–313, 412
SDM, 303
Web99, 322, 353

speed-up, see Amdahl’s law
SPMD, 382
Stability condition, 43, 45, 66, 67
Stack (memory), 100
Statistical software, 21
Steady state, 8, 43, 67, 153, 305, 382
Stretch factor, 257, 339, 382
SUT (System under test), 382
Synchronization

in queues, 155
of clocks, 5
VLSI circuits, 40

Tandem queues, 125, 192
Tcl versus Perl, vi
TCP/IP

connection, 345, 346
connections, 355
protocol, 318, 341, 343, 383
slow start, 43, 344

TeamQuest View, 400
Temporal ordering, 10
Tera prefix, 383
Terminal workload, 144
Test-and-set, 383
Thin client, 201
Think time, 88, 106, 145, 163, 273, 307,

362, 409
thrashing, 44, 211
Threads scheduler, 160
Three-tier architecture, 321
Throughput, 55, 56, 409
Throughput roll-off, see Retrograde

throughput
Time

benchmarks, 18
between failures (MTBF), 36
continuous, 6, 391
definitions, 4
discrete, 6
epoch, 5, 8
fundamental metric, 3
high resolution, 17
integer representation, 14
metric, 3
nanosecond scaled to human time, 7
physical, 5
scales, 6
tm data structure, 15
zero epoch, 14
zeroth metric, 3
zones, 19

Time series, 169, 172, 184, 189, 398, 400
Time unit suffixes, 415
Time Warp, 13
Time-share scheduler, 155, 184
Timing chain, 28, 29
Token ring, 113
Tools, 397
top, 172
Toyota, 386
TPC benchmarks, 383
TPC-C, 56
TPC-W, 321, 353
Traffic intensity, 74, 77, 79

Printing: Mercedes-Druck, Berlin
Binding: Stein + Lehmann, Berlin

436 Index

Transaction workload, 144
Transient performance, 44
Translation invariance, 394
Tree, see X font tree
TSP (Time stamp protocol), 383

UDP protocol, 383
UI, 383
UMA (Universal measurement

architecture), 31, 383, 407
Uniform distribution, 108
Universe, size of, 5
unix, 13, 303, 383, 398
uptime, 4, 34, 168–170
URC, 383
URI, 383
URL, 383
URN, 383
User loads, 302, 303, 305, 308–310
UTC (Coordinated universal time), 14
Utilization, 58, 409

sampling error, 402
server, 334, 336

Variance, 23, 24, 26, 106, 115, 322, 333,
335, 374

Virtual clock, 13
Virtual server, 158, 252
Visit count, 56, 58
Visit ratio, 58, 140, 142, 143
Visualization, 187, 398
VM (Virtual memory), 44, 211, 383
vmstat, see Performance tools
Vusers (Virtual Users), see User loads

Waiting
line, 70
room, 48, 59
time, 70

WAN, 383

Web
application stress testing, 357
applications, 321, 357
demon fork-on-demand, 348
demon preforking, 349

e-business, 357
protocols, 341
servers, 321

Weibull distribution, 37
Wheel of performance, 380
Windows 2000, 13, 398

IIS (Internet Information Server), 349
processor ready queue, 167
scalability, 271

Windows XP, see Windows 2000
Work conservation, 62
Workload

characterization, 135, 144, 322
classes, 135, 144
dummy, 412
management, 189
multiple, 135, 144, 246, 412
query-intensive, 290, 412
workflow, 324

Write-back cache, 271, 383
Write-through cache, 271, 383

X windows
architecture, 201
client/server, 201
font tree, 208
logarithmic model, 209
remote font service, 205
xscope tool, 206

XML, 383
XRunner, 210

z/OS, 13, 379, 383, 398
Zeroth metric, 3

	Preface
	Motivation
	Why Perl?
	Book Structure
	Classroom Usage
	Prerequisites and Limitations
	Acknowledgments
	Warranty Disclaimer

	Contents
	Part I Theory of System Performance Analysis
	1 Time—The Zeroth Performance Metric
	1.1 Introduction
	1.2 What Is Time?
	1.2.1 Physical Time
	1.2.2 Synchronization and Causality
	1.2.3 Discrete and Continuous Time
	1.2.4 Time Scales

	1.3 What Is a Clock?
	1.3.1 Physical Clocks
	1.3.2 Distributed Physical Clocks
	1.3.3 Distributed Processing
	1.3.4 Binary Precedence
	1.3.5 Logical Clocks
	1.3.6 Clock Ticks
	1.3.7 Virtual Clocks

	1.4 Representations of Time
	1.4.1 In the Beginning
	1.4.2 Making a Date With Perl
	1.4.3 High-Resolution Timing
	1.4.4 Benchmark Timers
	1.4.5 Crossing Time Zones

	1.5 Time Distributions
	1.5.1 Gamma Distribution
	1.5.2 Exponential Distribution
	1.5.3 Poisson Distribution
	1.5.4 Server Response Time Distribution
	1.5.5 Network Response Time Distribution

	1.6 Timing Chains and Bottlenecks
	1.6.1 Bottlenecks and Queues
	1.6.2 Distributed Instrumentation
	1.6.3 Disk Timing Chains
	1.6.4 Life and Times of an NFS Operation

	1.7 Failing Big Time
	1.7.1 Hardware Availability
	1.7.2 Tyranny of the Nines
	1.7.3 Hardware Reliability
	1.7.4 Mean Time Between Failures
	1.7.5 Distributed Hardware
	1.7.6 Components in Series
	1.7.7 Components in Parallel
	1.7.8 Software Reliability

	1.8 Metastable Lifetimes
	1.8.1 Microscopic Metastability
	1.8.2 Macroscopic Metastability
	1.8.3 Metastability in Networks
	1.8.4 Quantumlike Phase Transitions

	1.9 Review
	Exercises

	2 Getting the Jump on Queueing
	2.1 Introduction
	2.2 What Is a Queue?
	2.3 The Grocery Store—Checking It Out
	2.3.1 Queueing Analysis View
	2.3.2 Perceptions and Deceptions
	2.3.3 The Post Office—Snail Mail

	2.4 Fundamental Metric Relationships
	2.4.1 Performance Measures
	2.4.2 Arrival Rate
	2.4.3 System Throughput
	2.4.4 Nodal Throughput
	2.4.5 Relative Throughput
	2.4.6 Service Time
	2.4.7 Service Demand
	2.4.8 Utilization
	2.4.9 Residence Time

	2.5 Little’s Law Means a Lot
	2.5.1 A Little Intuition
	2.5.2 A Visual Proof
	2.5.3 Little’s Microscopic Law
	2.5.4 Little’s Macroscopic Law

	2.6 Unlimited Request (Open) Queues
	2.6.1 Single Server Queue
	2.6.2 Measured Service Demand
	2.6.3 Queueing Delays
	2.6.4 Twin Queueing Center
	2.6.5 Parallel Queues
	2.6.6 Dual Server Queue—Heuristic Analysis

	2.7 Multiserver Queue
	2.7.1 Erlang’s Formula
	2.7.2 Accuracy of the Heuristic Formula
	2.7.3 Erlang’s Formula
	2.7.4 Erlang Algorithms in Perl
	2.7.5 Dual Server Queue—Exact Analysis

	2.8 Limited Request (Closed) Queues
	2.8.1 Closed Queueing Center
	2.8.2 Interactive Response Time Law
	2.8.3 Repairman Algorithm in Perl
	2.8.4 Response Time Characteristic
	2.8.5 Throughput Characteristic
	2.8.6 Finite Response Times
	2.8.7 Approximating a Closed Queues

	2.9 Shorthand for Queues
	2.9.1 Queue Schematics
	2.9.2 Kendall Notation

	2.10 Comparative Performance
	2.10.1 Multiserver Versus Uniserver
	2.10.2 Multiqueue Versus Multiserver
	2.10.3 The Envelope Please!

	2.11 Generalized Servers
	2.11.1 Infinite Capacity (IS) Server
	2.11.2 Exponential (M) Server
	2.11.3 Deterministic (D) Server
	2.11.4 Uniform (U) Server
	2.11.5 Erlang-k (Ek) Server
	2.11.6 Hypoexponential (Hypo–k) Server
	2.11.7 Hyperexponential (Hk) Server
	2.11.8 Coxian (Cox–k) Server
	2.11.9 General (G) Server
	2.11.10 Pollaczek–Khintchine Formula
	2.11.11 Polling Systems

	2.12 Review
	Exercises

	3 Queueing Systems for Computer Systems
	3.1 Introduction
	3.2 Types of Circuits
	3.3 Poisson Properties
	3.3.1 Poisson Merging
	3.3.2 Poisson Branching
	3.3.3 Poisson Pasta

	3.4 Open-Circuit Queues
	3.4.1 Series Circuits
	3.4.2 Feedforward Circuits
	3.4.3 Feedback Circuits
	3.4.4 Jackson’s Theorem
	3.4.5 Parallel Queues in Series
	3.4.6 Multiple Workloads in Open Circuits

	3.5 Closed-Circuit Queues
	3.5.1 Arrival Theorem
	3.5.2 Iterative MVA Algorithm
	3.5.3 Approximate Solution

	3.6 Visit Ratios and Routing Probabilities
	3.6.1 Visit Ratios and Open Circuits
	3.6.2 Visit Ratios and Closed Circuits

	3.7 Multiple Workloads in Closed Circuits
	3.7.1 Workload Classes
	3.7.2 Baseline Analysis
	3.7.3 Aggregate Analysis
	3.7.4 Component Analysis

	3.8 When Is a Queueing Circuit Solvable?
	3.8.1 MVA Is a Style of Thinking
	3.8.2 BCMP Rules
	3.8.3 Service Classes

	3.9 Classic Computer Systems
	3.9.1 Time-Share Scheduler
	3.9.2 Fair-Share Scheduler
	3.9.3 Priority Scheduling
	3.9.4 Threads Scheduler

	3.10 What Queueing Models Cannot Do
	3.11 Review
	Exercises

	4 Linux Load Average—Take a Load Off!
	4.1 Introduction
	4.1.1 Load Average Reporting
	4.1.2 What Is an “Average” Load?

	4.2 A Simple Experiment
	4.2.1 Experimental Results
	4.2.2 Submerging Into the Kernel

	4.3 Load Calculation
	4.3.1 Fixed-Point Arithmetic
	4.3.2 Magic Numbers
	4.3.3 Empty Run-Queue
	4.3.4 Occupied Run-Queue
	4.3.5 Exponential Damping

	4.4 Steady-State Averages
	4.4.1 Time-Averaged Queue Length
	4.4.2 Linux Scheduler Model

	4.5 Load Averages and Trend Visualization
	4.5.1 What Is Wrong with Load Averages
	4.5.2 New Visual Paradigm
	4.5.3 Application to Workload Management

	4.6 Review
	Exercises

	5 Performance Bounds and Log Jams
	5.1 Introduction
	5.2 Out of Bounds in Florida
	5.2.1 Load Test Results
	5.2.2 Bottlenecks and Bounds

	5.3 Throughput Bounds
	5.3.1 Saturation Throughput
	5.3.2 Uncontended Throughput
	5.3.3 Optimal Load

	5.4 Response Time Bounds
	5.4.1 Uncontended Response Time
	5.4.2 Saturation Response Time
	5.4.3 Worst–Case Response Bound

	5.5 Meanwhile, Back in Florida
	5.5.1 Balanced Bounds
	5.5.2 Balanced Demand
	5.5.3 Balanced Throughput

	5.6 The X–Files: Encounters with Performance Aliens
	5.6.1 X-Windows Architecture
	5.6.2 Production Environment

	5.7 Close Encounters of the Performance Kind
	5.7.1 Close Encounters I: Rumors
	5.7.2 Close Encounters II: Measurements
	5.7.3 Close Encounters III: Analysis

	5.8 Performance Aliens Revealed
	5.8.1 Out of Sight, Out of Mind
	5.8.2 Log–Jammed Performance
	5.8.3 To Get a Log You Need a Tree

	5.9 X-Windows Scalability
	5.9.1 Measuring Sibling X-Events
	5.9.2 Superlinear Response

	5.10 Review
	Exercises

	Part II Practice of System Performance Analysis
	6 Pretty Damn Quick (PDQ)—A Slow Introduction
	6.1 Introduction
	6.2 How to Build PDQ Circuits
	6.3 Inputs and Outputs
	6.3.1 Setting Up PDQ
	6.3.2 Some General Guidelines

	6.4 Simple Annotated Example
	6.4.1 Creating the PDQ Model
	6.4.2 Reading the PDQ Report
	6.4.3 Validating the PDQ Model

	6.5 Perl PDQ Module
	6.5.1 PDQ Data Types
	6.5.2 PDQ Global Variables
	6.5.3 PDQ Functions

	6.6 Function Synopses
	6.6.1 PDQ::CreateClosed Syntax
	6.6.2 PDQ::CreateMultiNode Syntax
	6.6.3 PDQ::CreateNode Syntax
	6.6.4 PDQ::CreateOpen Syntax
	6.6.5 PDQ::CreateSingleNode Syntax
	6.6.6 PDQ::GetLoadOpt Syntax
	6.6.7 PDQ::GetQueueLength Syntax
	6.6.8 PDQ::GetResidenceTime Syntax
	6.6.9 PDQ::GetResponse Syntax
	6.6.10 PDQ::GetThruMax Syntax
	6.6.11 PDQ::GetThruput Syntax
	6.6.12 PDQ::GetUtilization Syntax
	6.6.13 PDQ::Init Syntax
	6.6.14 PDQ::Report Syntax
	6.6.15 PDQ::SetDebug Syntax
	6.6.16 PDQ::SetDemand Syntax
	6.6.17 PDQ::SetTUnit Syntax
	6.6.18 PDQ::SetVisits Syntax
	6.6.19 PDQ::SetWUnit Syntax
	6.6.20 PDQ::Solve Syntax

	6.7 Classic Queues in PDQ
	6.7.1 Delay Node in PDQ
	6.7.2 M/M/1 in PDQ
	6.7.3 M/M/m in PDQ
	6.7.4 M/M/1//N in PDQ
	6.7.5 M/M/m//N in PDQ
	6.7.6 Feedforward Circuits in PDQ
	6.7.7 Feedback Circuits in PDQ
	6.7.8 Parallel Queues in Series
	6.7.9 Multiple Workloads in PDQ
	6.7.10 Priority Queueing in PDQ
	6.7.11 Load-Dependent Servers in PDQ
	6.7.12 Bounds Analysis with PDQ

	6.8 Review
	Exercises

	7 Multicomputer Analysis with PDQ
	7.1 Introduction
	7.2 Multiprocessor Architectures
	7.2.1 Symmetric Multiprocessors
	7.2.2 Multiprocessor Caches
	7.2.3 Cache Bashing

	7.3 Multiprocessor Models
	7.3.1 Single-Bus Models
	7.3.2 Processing Power
	7.3.3 Multiple-Bus Models
	7.3.4 Cache Protocols
	7.3.5 Iron Law of Performance

	7.4 Multicomputer Models
	7.4.1 Parallel Query Cluster
	7.4.2 Query Saturation Method

	7.5 Review
	Exercises

	8 How to Scale an Elephant with PDQ
	8.1 An Elephant Story
	8.1.1 What Is Scalability?
	8.1.2 SPEC Multiuser Benchmark
	8.1.3 Steady-state Measurements

	8.2 Parts of the Elephant
	8.2.1 Service Demand Part
	8.2.2 Think Time Part
	8.2.3 User Load Part

	8.3 PDQ Scalability Model
	8.3.1 Interpretation
	8.3.2 Amdahl’s Law
	8.3.3 The Elephant’s Dimensions

	8.4 Review
	Exercises

	9 Client/Server Analysis with PDQ
	9.1 Introduction
	9.2 Client/Server Architectures
	9.2.1 Multitier Environments
	9.2.2 Three–Tier Options

	9.3 Benchmark Environment
	9.3.1 Performance Scenarios
	9.3.2 Workload Characterization
	9.3.3 Distributed Workflow

	9.4 Scalability Analysis with PDQ
	9.4.1 Benchmark Baseline
	9.4.2 Client Scaleup
	9.4.3 Load Balancer Bottleneck
	9.4.4 Database Server Bottleneck
	9.4.5 Production Client Load
	9.4.6 Saturation Client Load
	9.4.7 Per-Process Analysis

	9.5 Review
	Exercises

	10 Web Application Analysis with PDQ
	10.1 Introduction
	10.2 HTTP Protocol
	10.2.1 HTTP Performance
	10.2.2 HTTP Analysis Using PDQ
	10.2.3 Fork-on-Demand Analysis
	10.2.4 Prefork Analysis

	10.3 Two-Tier PDQ Model
	10.3.1 Data and Information Are Not the Same
	10.3.2 HTTPd Performance Measurements
	10.3.3 Java Performance Measurements

	10.4 Middleware Analysis Using PDQ
	10.4.1 Active Client Threads
	10.4.2 Load Test Results
	10.4.3 Derived Service Demands
	10.4.4 Naive PDQ Model
	10.4.5 Adding Hidden Latencies in PDQ
	10.4.6 Adding Overdriven Throughput in PDQ

	10.5 Review
	Exercises

	Part III Appendices
	A Glossary of Terms
	B A Short History of Buffers
	C Thanks for No Memories
	C.1 Life in the Markov Lane
	C.2 Exponential Invariance
	C.3 Shape Preservation
	C.4 A Counterexample

	D Performance Measurements and Tools
	D.1 Performance Counters and Objects
	D.2 Java Bytecode Instrumentation
	D.3 Generic Performance Tools
	D.4 Displaying Performance Metrics
	D.5 Storing Performance Metrics
	D.6 Performance Prediction Tools
	D.7 How Accurate are Your Data?
	D.8 Are Your Data Poissonian?
	D.9 Performance Measurement Standards

	E Compendium of Queueing Equations
	E.1 Fundamental Metrics
	E.2 Queueing Delays

	F Installing PDQ and PerlPrograms
	F.1 Perl Scripts
	F.2 PDQ Scripts
	F.3 Installing the PDQ Module

	G Units and Abbreviations
	G.1 SI Prefixes
	G.2 Time Suffixes
	G.3 Capacity Suffixes

	H Solutions to Selected Exercises
	Bibliography
	Index

